Skip to main content
Log in

Binding of Aminoalkylindoles to Noncannabinoid Binding Sites in NG108-15 Cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Aminoalkylindoles, typified by WIN 55212-2, bind to G protein-coupled cannabinoid receptors in brain. Although cannabinoids inhibit adenylyl cyclase in NG108-15 neuroblastoma × glioma hybrid cells, cannabinoid receptor binding in these cells has not been described previously. This study compares pharamcological characteristics of [3H]WIN 55212-2 binding sites in rat cerebellar membranes and in NG108-15 membranes.

2. Although the K D of specifid [3H]WIN 55212-2 binding was similar in brain and NG108-15 membranes, the B max was 10 times lower in NG108-15 than in cerebellar membranes. In both brain and NG108-15 membranes, aminoalkylindole analogues were relatively potent in displacing [3H]WIN 55212-2 binding.However, IC50 values for more traditional cannabinoids were significantly higher in NG108-15 membranes than in brain, e.g., the K i values for CP55,940 were1.2nM in brain and >5000nM in NG108-15 membranes. Moreover, sodium and GTP-γ-S decreased [3H]WIN 55212-2 binding in brain but not in NG108-15membranes.

3. These data suggest that WIN 55212-2 does not label traditional cannabinoid receptors in NG108-15 cells and that these novel aminoalkylindolebinding sites are not coupled to G proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  • Cheng, Y.-C., and Prusoff, W. H. (1973). Relationship between the inhibition constant (K i) and the concentration of inhibitor that causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–4002.

    Google Scholar 

  • Childers, S. R. (1991). Opioid receptor-coupled second messengers. Life Sci. 48:1991–2003.

    Google Scholar 

  • Childers, S. R., Sexton, T., and Roy, M. B. (1994). Effects of anandamide on cannabinoid receptors in rat brain membranes. Biochem. Pharmacol. 47:711–715.

    Google Scholar 

  • Chu, D. C. M., Albin, R. L., Young, A. B., and Penney, J. B. (1990). Distribution and kinetics of GABAB binding sites in rat central nervous system: A quantitative autoradiographic study. Neuroscience 34:341–357.

    Google Scholar 

  • Compton, D., Johnson, M. R., Melvin, L., and Martin, B. R. (1992). Pharmacological profile of a series of bicyclic cannabinoid analogues: Classification as cannabimimetic agents. J. Pharmacol. Exp. Ther. 260:201–209.

    Google Scholar 

  • Creese, I., and Snyder, S. H. (1975). Receptor binding and pharmacological activity of opiates in the guinea pig intestine. J. Pharmacol. Exp. Ther. 194:205–219.

    Google Scholar 

  • Devane, W. A., Dysarz, F. A. I., Johnson, M. R., Melvin, L. S., and Howlett, A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Mol. Pharmacol. 34:605–613.

    Google Scholar 

  • Fan, F., Tao, Q., Abood, M. E., and Martin, B. R. (1996). Cannabinoid receptor down-regulation without alteration of the inhibitory effect of CP 55,940 on adenylyl cyclase in the cerebellum of CP 55,940-tolerant mice. Brain Res. 706:13–20.

    Google Scholar 

  • Gaoni, Y., and Mechoulam, R. (1964). Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Sco. 86:1646–1647.

    Google Scholar 

  • Herkenham, M., Lynn, A. B., Little, M. D., Johnson, M. R., Melvin, L. S., De Costa, B. R., and Rice, K. C. (1990). Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA 87:1932–1936.

    Google Scholar 

  • Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K. C. (1991). Characterization and localization of cannabinoid receptors in rat brain: A quantitative in vitro autoradiographic study. J. Neurosci. 11:563–583.

    Google Scholar 

  • Howlett, A. C. (1984). Inhibition of neuroblastoma adenylyl cyclase by cannabinoid and nantradol compounds. Life Sci. 35:1803–1810.

    Google Scholar 

  • Howlett, A. C. (1985). Cannabinoid inhibition of adenylate cyclase: Biochemistry of the response in Neuroblastoma cell membranes. Mol. Pharmacol. 27:429–436.

    Google Scholar 

  • Howlett, A. C., and Fleming, R. M. (1984). Cannabinoid inhibition of adenylate cyclase: Pharmacology of the response in neuroblastoma cell membranes. Mol. Pharmacol. 26:532–538.

    Google Scholar 

  • Howlett, A. C., Qualy, J. M., and Khachatrian, L. L. (1986). Involvement of Gi in the inhibition of adenylate cyclase by cannabimimetic drugs. Mol. Pharmacol. 29:307–313.

    Google Scholar 

  • Howlett, A. C., Johnson, M. R., Melvin, L. S., and Milne, G. M. (1988). Nonclassical cannabinoid analgesics inhibit adenylate cyclase: Development of a cannabinoid receptor model. Mol. Pharmacol. 33:297–302.

    Google Scholar 

  • Jansen, E. M., Haycock, D. A., Ward, S. J., and Seybold, V. S. (1992). Distribution of cannabinoid receptors in rat brain determined with aminoalkylindoles. Brain Res. 575:93–102.

    Google Scholar 

  • Kenakin, T. (1993). Efficacy. In Pharmacologic Analysis of Drug-Receptor Interaction, Raven, New York, pp. 249–277.

    Google Scholar 

  • Kuster, J., Stevenson, J., Ward, S., D'Ambra, T., and Haycock, D. (1993). Aminoalkylindole binding in rat cerebellum: Selective displacement by natural and synthetic cannabinoids. J. Pharmacol. Exp. Ther. 264:1352–1363.

    Google Scholar 

  • Pacheco, M., Childers, S. R., Arnold, R., Casiano, F., and Ward, S. J. (1991). Aminoalkylindoles: Actions on specific G-proetin-linked receptors. J. Pharmacol. Exp. Ther. 257:170–183.

    Google Scholar 

  • Pacheco, M., Ward, S. J., and Childers, S. R. (1993). Identification of cannabinoid receptors in cultures of rat cerebellar granule cells. Brain Res. 603:102–110.

    Google Scholar 

  • Selley, D. E., Breivogel, C. S., and Childers, S. R. (1993). Modification of opioid receptor-G-protein function by low pH pretreatment of membranes from NG108-15 cells: Increase in opioid agonist efficacy by decreased inactivation of G-proteins. Mol. Pharmacol. 44:731–741.

    Google Scholar 

  • Sim, L. J., Selley, D. E., and Childers, S. R. (1995). In vitro autoradiography of receptor-activated G-proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. USA 92:7242–7246.

    Google Scholar 

  • Sim, L. J., Selley, D. E., Xiao, R., and Childers, S. R. (1996). Differences in G-protein activation by mu and delta opioid, and cannabinoid, receptors in rat striatum. Eur. J. Pharmacol. 307:95–107.

    Google Scholar 

  • Ward, S. J., Baizman, E., Bell, M., Childers, S., D'Ambra, T., Eissenstat, M., Estep, K., Haycock, D., Howlett, A., Luttinger, D., et al. (1990). Aminoalkylindoles (AAIs): A new route to the cannabinoid receptor? NIDA Res. Monogr. 105:425–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, S., Pacheco, M.A. & Childers, S.R. Binding of Aminoalkylindoles to Noncannabinoid Binding Sites in NG108-15 Cells. Cell Mol Neurobiol 17, 483–493 (1997). https://doi.org/10.1023/A:1026306804802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026306804802

Navigation