Skip to main content
Log in

Tikhonov Regularization of Large Linear Problems

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a new numerical method, based on Lanczos bidiagonalization and Gauss quadrature, for Tikhonov regularization of large-scale problems. An estimate of the norm of the error in the data is assumed to be available. This allows the value of the regularization parameter to be determined by the discrepancy principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. L. Baart, The use of auto-correlation for pseudo-rankdeterm ination in noisy ill-conditioned least-squares problems, IMA J. Numer. Anal., 2 (1982), pp. 241-247.

    Google Scholar 

  2. A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, 1994.

    Google Scholar 

  3. Å. Björck, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT, 18 (1988), pp. 659-670.

    Google Scholar 

  4. Å. Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

    Google Scholar 

  5. D. Calvetti, G. H. Golub, and L. Reichel, Estimation of the L-curve via Lanczos bidiagonalization, BIT, 39 (1999), pp. 603-619.

    Google Scholar 

  6. D. Calvetti, P. C. Hansen, and L. Reichel, L-curve curvature bounds via Lanczos bidiagonalization, Elec. Trans. Numer. Anal., 14 (2002), pp. 20-35.

    Google Scholar 

  7. D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari, Tikhonov regularization and the L-curve for large, discrete ill-posed problems, J. Comput. Appl. Math., 123 (2000), pp. 423-446.

    Google Scholar 

  8. D. Calvetti, L. Reichel, F. Sgallari, and G. Spaletta, A regularizing Lanczos iteration method for underdetermined linear systems, J. Comput. Appl. Math., 115 (2000), pp. 101-120.

    Google Scholar 

  9. D. Calvetti, L. Reichel, and Q. Zhang, Iterative solution methods for large linear discrete ill-posed problems, Applied and Computational Control, Signals and Circuits, 1 (1999), pp. 313-367.

    Google Scholar 

  10. L. Eldén, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17 (1977), pp. 134-145.

    Google Scholar 

  11. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.

    Google Scholar 

  12. A. Frommer and P. Maass, Fast CG-based methods for Tikhonov-Phillips regularization, SIAM J. Sci. Comput., 20 (1999), pp. 1831-1850.

    Google Scholar 

  13. G. H. Goluban G. Meurant, Matrices, moments and quadrature, in Numerical Analysis 1993, eds. D. F. Griffiths and G. A. Watson, Longman, Essex, England, 1994, pp. 105-156.

    Google Scholar 

  14. G. H. Goluban C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore, 1996.

    Google Scholar 

  15. G. H. Goluban U. von Matt, Tikhonov regularization for large scale problems, in Workshop on Scientific Computing, eds. G. H. Golub, S. H. Lui, F. Luk, and R. Plemmons, Springer, New York, 1997, pp. 3-26.

    Google Scholar 

  16. C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984.

    Google Scholar 

  17. P. C. Hansen, Regularization tools: A Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algor., 6 (1994), pp. 1-35. Software is available in Netlibat http://www.netlib.org.

    Google Scholar 

  18. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.

    Google Scholar 

  19. C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43-71.

    Google Scholar 

  20. C. C. Paige and M. A. Saunders, Algorithm 583 LSQR: Sparse linear equations and least squares problems, ACM Trans. Math. Software, 8 (1982), pp. 195-209.

    Google Scholar 

  21. D. L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9 (1962), pp. 84-97.

    Google Scholar 

  22. C. B. Shaw, Jr., Improvements of the resolution of an instrument by numerical solution of an integral equation, J. Math. Anal. Appl., 37 (1972), pp. 83-112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvetti, D., Reichel, L. Tikhonov Regularization of Large Linear Problems. BIT Numerical Mathematics 43, 263–283 (2003). https://doi.org/10.1023/A:1026083619097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026083619097

Navigation