Skip to main content
Log in

Patterning Axonal Guidance Molecules Using a Novel Strategy for Microcontact Printing

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-l-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-l-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-l-lysine pattern, and the dendrites were constrained to the poly-l-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of ∼1 μm. This method should be broadly applicable to many classes of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cotman, C. W., Banker, G., Churchill, L., and Taylor, D. 1974. Isolation of postsynaptic densities from rat brain. J. Cell Biol. 63:441-455.

    PubMed  Google Scholar 

  2. Cotman, C. W. and Banker, G. A. 1974. The making of synapse. In: Reviews of Neuroscience, vol. 1, S. Ehrenpreis and I. J. Kopin, (Eds.), Raven Press, New York, pp. 1-61.

    Google Scholar 

  3. Stenger, D. A., Hickman, J. J., Bateman, K. E., Ravenscroft, M. S., Ma, W., Pancrazio, J. J., Shaffer, K., Schaffner, A. E., Cribbs, D. H., and Cotman, C. W. 1998. Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons. J. Neurosci. Methods 82:167-173.

    PubMed  Google Scholar 

  4. Kleinfeld, D., Kahler, K. H., and Hockberger, P. E. 1988. Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8:4098-4120.

    PubMed  Google Scholar 

  5. Corey, J. M., Brunette, A. L., Chen, M. S., Weyhenmeyer, J. A., Brewer, G. J., and Wheeler, B. C. 1997. Differentiated B104 neuroblastoma cells are a high-resolution assay for micropatterned substrates. J. Neurosci. Methods 75:91-97.

    PubMed  Google Scholar 

  6. Branch, D. W., Corey, J. M., Weyhenmeyer, J. A., Brewer, G. J., and Wheeler, B. C. 1998. Microstamp patterns of biomolecules for high-resolution neuronal networks. Med. Biol. Eng. Comput. 36:135-141.

    PubMed  Google Scholar 

  7. Branch, D. W., Wheeler, B. C., Brewer, G. J., and Leckband, D. E. 2000. Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine. IEEE Trans. Biomed. Eng. 47:290-300.

    PubMed  Google Scholar 

  8. Branch, D. W., Wheeler, B. C., Brewer, G. J., and Leckband, D. E. 2001. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials 22:1035-1047.

    PubMed  Google Scholar 

  9. Wheeler, B. C., Corey, J. M., Brewer, G. J., and Branch, D. W. 1999. Microcontact printing for precise control of nerve cell growth in culture. J. Biomech. Eng. 121:73-78.

    PubMed  Google Scholar 

  10. Chang, J. C., Brewer, G. J., and Wheeler, B. C. 2001. Modulation of neural network activity by patterning. Biosens. Bioelectron. 16:527-533.

    PubMed  Google Scholar 

  11. Clark, P., Connolly, P., Curtis, A. S., Dow, J. A., and Wilkinson, C. D. 1987. Topographical control of cell behaviour: I. Simple step cues. Development 99:439-448.

    PubMed  Google Scholar 

  12. Craighead, H. G., Turner, S. W., Davis, R. C., James, C., Perezs, A. M., St. John, P. M., Isaacson, M. S., Kam, L., Shain, W., Turner, J. N., and Banker, G. A. 1998. Chemical and topographical surface modification for control of central nervous system cell adhesion. J. Biomed. Microdevices 1:49-64.

    Google Scholar 

  13. Curtis, A. S. and Wilkinson, C. D. 1998. Reactions of cells to topography. J. Biomater. Sci. Polym. Educ. 9:1313-1329.

    Google Scholar 

  14. Kumar, A. and Whitesides, G. M. 1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63:2002.

    Google Scholar 

  15. St. John, P. M., Davis, R., Cady, N., Czajka, J., Batt, C. A., and Craighead, H. G. 1998. Diffraction-based cell detection using a microcontact printed antibody grating. Anal. Chem. 70:1108-1111.

    PubMed  Google Scholar 

  16. Cornish, T., Branch, D. W., Wheeler, B. C., and Campanelli, J. T. 2002. Microcontact printing: A versatile technique for the study of synaptogenic molecules. Mol. Cell Neurosci. 20:140-153.

    PubMed  Google Scholar 

  17. James, C. D., Davis, R. C., Kam, L., Craighead, H. G., Isaacson, M., Turner, J. N., and Shain, W. 1998. Patterned protein layers on solid substrates by thin stamp microcontact printing. Langmuir 14:741-744.

    Google Scholar 

  18. Scholl, M., Sprossler, C., Denyer, M., Krause, M., Nakajima, K., Maelicke, A., Knoll, W., and Offenhausser, A. 2000. Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces. J. Neurosci. Methods 104:65-75.

    PubMed  Google Scholar 

  19. Folch, A. and Toner, M. 2000. Microengineering of cellular interactions. Annu. Rev. Biomed. Eng. 2:227-256.

    PubMed  Google Scholar 

  20. Kamiguchi, H. and Lemmon, V. 1997. Neural cell adhesion molecule L1: Signaling pathways and growth cone motility. J. Neurosci. Res. 49:1-8.

    PubMed  Google Scholar 

  21. Moos, M., Tacke, R., Scherer, H., Teplow, D., Fruh, K., and Schachner, M. 1988. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334:701-703.

    PubMed  Google Scholar 

  22. van den Pol, A. N. and Kim, W. T. 1993. NILE/L1 and NCAM-polysialic acid expression on growing axons of isolated neurons. J. Comp Neurol. 332:237-257.

    PubMed  Google Scholar 

  23. Silverman, M. A., Kaech, S., Jareb, M., Burack, M. A., Vogt, L., Sonderegger, P., and Banker, G. 2001. Sorting and directed transport of membrane proteins during development of hippocampal neurons in culture. Proc. Natl. Acad. Sci. USA 98:7051-7057.

    PubMed  Google Scholar 

  24. Lemmon, V., Farr, K. L., and Lagenaur, C. 1989. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron 2:1597-1603.

    PubMed  Google Scholar 

  25. Kadmon, G. and Altevogt, P. 1997. The cell adhesion molecule L1: Species-and cell-type-dependent multiple binding mechanisms. Differentiation 61:143-150.

    PubMed  Google Scholar 

  26. Banker, G. A. and Goslin, K. 1998. Culturing Nerve Cells, Cambridge, MA, The MIT Press.

    Google Scholar 

  27. Doherty, P., Williams, E., and Walsh, F. S. 1995. A soluble chimeric form of the L1 glycoprotein stimulates neurite outgrowth. Neuron 14:57-66.

    PubMed  Google Scholar 

  28. Simmons, D. L. 1993. Dissecting the modes of interactions amongst cell adhesion molecules. Dev. Suppl. 193-203.

  29. Archer, F. R., Doherty, P., Collins, D., and Bolsover, S. R. 1999. CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calcium concentration. Eur. J. Neurosci. 11:3565-3573.

    PubMed  Google Scholar 

  30. Langone, J. J. 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32:157-252.

    PubMed  Google Scholar 

  31. Deisenhofer, J. 1981. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9-and 2.8-A resolution. Biochemistry 20:2361-2370.

    PubMed  Google Scholar 

  32. Gouda, H., Shiraishi, M., Takahashi, H., Kato, K., Torigoe, H., Arata, Y., and Shimada, I. 1998. NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37:129-136.

    PubMed  Google Scholar 

  33. Esch, T., Lemmon, V., and Banker, G. 1999. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 19:6417-6426.

    PubMed  Google Scholar 

  34. Esch, T., Lemmon, V., and Banker, G. 2000. Differential effects of NgCAM and N-cadherin on the development of axons and dendrites by cultured hippocampal neurons. J. Neurocytol. 29:215-223.

    PubMed  Google Scholar 

  35. Corey, J. M., Wheeler, B. C., and Brewer, G. J. 1991. Compliance of hippocampal neurons to patterned substrate networks. J. Neurosci. Res. 30:300-307.

    PubMed  Google Scholar 

  36. Kolodkin, A. L. and Ginty, D. D. 1997. Steering clear of semaphorins: Neuropilins sound the retreat. Neuron 19:1159-1162.

    PubMed  Google Scholar 

  37. He, Z., Wang, K. C., Koprivica, V., Ming, G., and Song, H. J. 2002. Knowing how to navigate: Mechanisms of semaphorin signaling in the nervous system. Sci. STKE. 2002:RE1.

    PubMed  Google Scholar 

  38. Lein, P., Johnson, M., Guo, X., Rueger, D., and Higgins, D. 1995. Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron 15:597-605.

    PubMed  Google Scholar 

  39. Withers, G. S., Higgins, D., Charette, M., and Banker, G. 2000. Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neurons. Eur. J. Neurosci. 12:106-116.

    PubMed  Google Scholar 

  40. Vielmetter, J., Stolze, B., Bonhoeffer, F., and Stuermer, C. A. 1990. In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp. Brain Res. 81:283-287.

    PubMed  Google Scholar 

  41. Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonhoeffer, F. 1995. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359-370.

    PubMed  Google Scholar 

  42. Monnier, P. P., Sierra, A., Macchi, P., Deitinghoff, L., Andersen, J. S., Mann, M., Flad, M., Hornberger, M. R., Stahl, B., Bonhoeffer, F., and Mueller, B. K. 2002. RGM is a repulsive guidance molecule for retinal axons. Nature 419:392-395.

    PubMed  Google Scholar 

  43. Loschinger, J., Weth, F., and Bonhoeffer, F. 2000. Reading of concentration gradients by axonal growth cones. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355:971-982.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Banker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, A.A., James, C.D., Kingman, C.E. et al. Patterning Axonal Guidance Molecules Using a Novel Strategy for Microcontact Printing. Neurochem Res 28, 1639–1648 (2003). https://doi.org/10.1023/A:1026052820129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026052820129

Navigation