Skip to main content
Log in

Noise-Stabilized Long-Distance Synchronization in Populations of Model Neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Rhythmic, synchronous firing of groups of neurons is associated with behaviorally relevant states, and it is thus of interest to understand the mechanisms by which synchronization may be achieved. In hippocampal slice preparations, networks of excitatory and inhibitory neurons have been seen to synchronize when strong stimulation is applied at separated sites between which any coupling must be subject to a significant axonal delay. We extend previous work on synchronization in a model system based on the network architecture of these hippocampal slices. Our new analysis addresses the effects of heterogeneous populations and noisy inputs on the stability of synchronous solutions in the system. We find that, with experimentally motivated constraints on the coupling strength, sufficiently large heterogeneity in the input currents renders synchrony unstable. The addition of noise, however, restores stable near-synchrony. We analytically reduce the high-dimensional biophysical equations for the full population to a simple three-dimensional map, and show that the map's stability properties correctly predict both the loss of stability and the restabilizing effect of the noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149: 1633-1648.

    PubMed  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G (1995) Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. Journal of Neuroscience 15: 47-60.

    PubMed  Google Scholar 

  • Collins JJ (1999) Fishing for function in noise. Nature 402: 241-242.

    Article  PubMed  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced tactile sensation. Nature 383: 770.

    Article  PubMed  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996a) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. Journal of Neurophysiology 76(1): 642-645.

    PubMed  Google Scholar 

  • De Pascalis V, Ray WJ (1998) Effects of memory load on eventrelated patterns of 40 Hz EEG during cognitive and motor tasks. Journal of Psychophysiology 28: 301-315.

    Article  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365: 337-340.

    Article  PubMed  Google Scholar 

  • Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences (USA) 95: 1259-1264.

    Article  Google Scholar 

  • Farmer SF (1998) Rhymicity, synchronization, and binding in human and primate motor systems. Journal of Physiology 509: 3-14.

    Article  PubMed  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560-1563.

    Article  PubMed  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Reviews of Modern Physics 70(1): 223-287.

    Article  Google Scholar 

  • Gomez C, Vasquez M, Vaquero E, Lopez-Mendoza D, Cardoso M (1998) Frequency analysis of the EEG during spatial selective attention. International Journal of Neuroscience 95: 17-32.

    PubMed  Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213): 334-337.

    Article  PubMed  Google Scholar 

  • Hasty J, Collins JJ (2002) Translating the noise. Nature Genetics 31: 13-14.

    Article  PubMed  Google Scholar 

  • Hu B, Zhou C (2000) Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Physical Review E 61(2): R1001-R1004.

    Article  Google Scholar 

  • Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proceedings of the National Academy of Sciences (USA) 91: 11748-11751.

    Google Scholar 

  • Karbowski J, Kopell N (2000) Multispikes and synchronization in a large neural network with temporal delays. Neural Computation 12: 1573-1606.

    Article  PubMed  Google Scholar 

  • Kocarev L, Tasev Z (2002) Lyapunov exponents, noise-induced synchronization, and Parrondo’s paradox. Physical Review E 65: 046215.

    PubMed  Google Scholar 

  • Lai C-H, Zhou C (1998) Synchronization of chaotic maps by symmetric common noise. Europhysics Letters 43(4): 376-380.

    Article  Google Scholar 

  • Laing CR, Longtin A (2001) Noise-induced stabilization of bumps in systems with long-range spatial coupling. Physica D 160: 149-172.

    Google Scholar 

  • Manjarrez E, Rojas-Piloni JG, Mendez I, Martinez I, Velez D, Vazquez D, Flores A (2002) Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat. Neuroscience Letters 326: 93-96.

    Article  PubMed  Google Scholar 

  • Maritan A, Banavar JR (1994) Chaos, noise, and synchronization. Physical Review Letters 72(10): 1451-1454.

    Article  PubMed  Google Scholar 

  • Miltner W, Braun C, Arnold M, Witte H, Taub W (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397: 434-436.

    Article  PubMed  Google Scholar 

  • Murthy V, Fetz E (1992) Coherent 25-to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proceedings of the National Academy of Sciences (USA) 89: 5670-5674.

    Google Scholar 

  • Ozbudak E, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nature Genetics 31: 69-73.

    Article  PubMed  Google Scholar 

  • Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proceedings of the National Academy of Sciences (USA) 97(13): 7148-7153.

    Article  Google Scholar 

  • Pulvermuller F, Birbaumer N, Lutzenberger W, Mohr B (1997) Highfrequency brain activity: Its possible role in attention, perception, and language processing. Progress in Neurobiology 52: 427-445.

    Article  PubMed  Google Scholar 

  • Richardson KA, Imhoff TT, Grigg P, Collins JJ (1998) Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli. Chaos 8: 599-603.

    Article  PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela F (1999) Perception’s shadow: Long-distance synchronization of human brain activity. Nature 397: 430-433.

    Article  PubMed  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, Singer W (1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612): 157-161.

    Article  PubMed  Google Scholar 

  • Russell DF, Wilkens LA, Moss F (1999) Use of behavioural stochastic resonance by paddle fish for feeding. Nature 402: 291-294.

    Article  PubMed  Google Scholar 

  • Sosnovtseva OV, Setsinsky D, Fausboll A, Mosekilde E (2002) Transitions between â and ã rhythms in neural systems. Physical Review E 66: 041901.

    Article  Google Scholar 

  • Stacey WC, Durand DM (2001) Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. Journal of Neurophysiology 86(3): 1104-1112.

    PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Neurosciences 3: 151-162.

    Article  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band (30-70 Hz) activity during the delay of a visual shortterm memory task in humans. Journal of Neuroscience 18: 4244-4254.

    PubMed  Google Scholar 

  • Taylor JR (1997) An introduction to error analysis. University Science Books, Sausalito, CA.

    Google Scholar 

  • Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proceedings of the National Academy of Sciences (USA) 98: 8614.

    Article  Google Scholar 

  • Tiesinga PHE, José JV (2000) Robust gamma oscillations in networks of inhibitory hippocampal interneurons. Network 11: 1-23.

    PubMed  Google Scholar 

  • Tiesinga PHE, Jos´e JV (2000) Synchronous clusters in a noisy inhibitory neural network. Journal of Computational Neuroscience 9: 49-65.

    Article  PubMed  Google Scholar 

  • Traub R, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Traub RD, Whittington MA, Stanford IM, Jefferys JGR (1996) Inteneuron doublet firing allows long range synchrony of gamma frequency neuronal oscillations despite axon conduction delays. Nature 383: 621-624.

    Article  PubMed  Google Scholar 

  • Wang Y, Chik DTW, Wang ZD (2000) Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Physical Review E 61(1): 740-746.

    Article  Google Scholar 

  • Whittington MA, Stanford IM, Colling S, Jefferys JGR, Traub R (1997) Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. Journal of Physiology 502(3): 591-607.

    Article  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout GB, Buhl EH (2000) Inhibition-based rhythms: Experimental and mathematical observations on network dynamics. International Journal of Psychophysiology 38: 315-336.

    Article  PubMed  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: From ice ages to crayfish and SQUIDs. Nature 373(6509): 33-36.

    Article  PubMed  Google Scholar 

  • Zhou C, Kurths J (2002) Noise-induced phase synchronization and synchronization transitions in chaotic oscillators. Physical Review Letters 88(23): 230602.

    Article  PubMed  Google Scholar 

  • Zhou C, Kurths J, Kiss IZ, Hudson JL (2002) Noise-enhanced phase synchronization of chaotic oscillators. Physical Review Letters 89(1): 014101.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillen, D., Kopell, N. Noise-Stabilized Long-Distance Synchronization in Populations of Model Neurons. J Comput Neurosci 15, 143–157 (2003). https://doi.org/10.1023/A:1025860724292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025860724292

Navigation