Skip to main content
Log in

The Global Arrow of Time as a Geometrical Property of the Universe

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Traditional discussions about the arrow of time in general involve the concept of entropy. In the cosmological context, the direction past-to-future is usually related to the direction of the gradient of the entropy function of the universe. But the definition of the entropy of the universe is a very controversial matter. Moreover, thermodynamics is a phenomenological theory. Geometrical properties of space-time provide a more fundamental and less controversial way of defining an arrow of time for the universe as a whole. We will call the arrow defined only on the basis of the geometrical properties of space-time, independently of any entropic considerations, “the global arrow of time.” In this paper we will argue that: (i) if certain conditions are satisfied, it is possible to define a global arrow of time for the universe as a whole, and (ii) the standard models of contemporary cosmology satisfy these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Castagnino, L. Lara, and O. Lombardi, “The cosmological origin of time-asymmetry, ” Classical and Quantum Gravity 20, 369–391 (2003).

    Google Scholar 

  2. J. Barrow, The Origin of the Universe (Basic Books, New York, 1994).

    Google Scholar 

  3. L. Bergstrom and A. Goobar, Cosmology and Particle Astrophysics (Wiley, New York, 1999).

    Google Scholar 

  4. J. P. Ostriker and P. J. Steinhardt, “The observational case for a low-density universe with a non-zero cosmological constant, ” Nature 377, 600–602 (1995).

    Google Scholar 

  5. R. Smith, The Expanding Universe: Astronomy's Great Debate (Cambridge University Press, Cambridge, 1982).

    Google Scholar 

  6. G. Burbidge, “Modern cosmology. The harmonious and discordant facts, ” Internat. J. Theoret. Phys. 28, 983–1004 (1989).

    Google Scholar 

  7. R. Penrose, “Singularities and time asymmetry, ” in General Relativity, an Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  8. R. G. Sachs, The Physics of Time Reversal (University of Chicago Press, Chicago, 1987).

    Google Scholar 

  9. L. Sklar, Space, Time, and Spacetime (University of California Press, Berkeley, 1974).

    Google Scholar 

  10. J. Earman, “An attempt to add a little direction to 'the problem of the direction of time', ” Philosophy of Science 41, 15–47 (1974).

    Google Scholar 

  11. H. Price, Time's Arrow and Archimedes' Point: New Directions for the Physics of Time (Oxford University Press, New York/Oxford, 1996).

    Google Scholar 

  12. S. Brush, The Kind of Motion We Call Heat (North-Holland, Amsterdam, 1976).

    Google Scholar 

  13. J. Earman, op. cit., p. 15.

  14. H. Reichenbach, The Direction of Time (University of California Press, Berkeley, 1956), pp. 127–128.

    Google Scholar 

  15. P. C. W. Davies, “Stirring up trouble, ” in Physical Origins of Time Asymmetry, in J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek, eds. (Cambridge University Press, Cambridge, 1994), p. 124.

    Google Scholar 

  16. L. Sklar, Physics and Chance (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  17. P. C. W. Davies, The Physics of Time Asymmetry (University of California Press, Berkeley-Los Angeles, 1974).

    Google Scholar 

  18. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison–Wesley, New York, 1964).

    Google Scholar 

  19. D. Layzer, “The arrow of time, ” Sci. Am. 234, 56–69 (1975).

    Google Scholar 

  20. M. C. Mackey, “The dynamic origin of increasing entropy, ” Reviews of Modern Physics 61, 981–1015 (1989).

    Google Scholar 

  21. J. Earman, op. cit., p. 20.

  22. J. Earman, op. cit., p. 22.

  23. G. Matthews, “Time's arrow and the structure of spacetime, ” Philosophy of Science 46, 82–97 (1979), p. 90.

    Google Scholar 

  24. G. Matthews, op. cit., p. 92.

  25. H. Reichenbach, op. cit., p. 127.

  26. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  27. B. F. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980).

    Google Scholar 

  28. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  29. A. Grunbaum, Philosophical Problems of Space and Time (Reidel, Dordrecht, 1973), p. 790.

    Google Scholar 

  30. S. F. Savitt, “Introduction, ” in Time's Arrows Today, S. F. Savitt, ed. (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  31. M. Castagnino and E. Gunzig, “A landscape of time asymmetry, ” Internat. J. Theoret. Phys. 36, 2545–2581 (1997), p. 2545.

    Google Scholar 

  32. H. Price, op. cit., p. 88.

  33. J. J. Halliwell, “Quantum cosmology and time asymmetry, ” in Physical Origins of Time Asymmetry, J. J. Halliwell, J. Perez-Mercader, and W. H. Zurek, eds. (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  34. M. Castagnino, H. Giacomini, and L. Lara, “Dynamical properties of the conformally coupled FRW model, ” Physical Review D 61, 107302(2000).

    Google Scholar 

  35. M. Castagnino, H. Giacomini, and L. Lara, “Qualitative dynamical properties of a spatially closed FRW universe conformally coupled to a scalar field, ” Physical Review D 63, 044003(2001).

    Google Scholar 

  36. S. F. Savitt, “The direction of time, ” British J. Phil. Sci. 47, 347–370 (1996).

    Google Scholar 

  37. T. Gold, “Cosmic processes and the nature of time, ” in Mind and Cosmos, R. Colodny, ed. (University of Pittsburgh Press, Pittsburgh, 1966).

    Google Scholar 

  38. J. Earman, op. cit., p. 24.

  39. J. Earman, op. cit., pp. 26–27.

  40. J. Earman and J. Norton, “What price spacetime substantivalism? The hole story, ” British J. Phil. Sci. 38, 515–525, 522 (1987).

    Google Scholar 

  41. J. Earman, op. cit., p. 25.

  42. J. Earman, World Enough and Space-Time (The MIT Press, Cambridge MA, 1989).

    Google Scholar 

  43. O. Lombardi, “Determinism, internalism and objectivity, ” in Between Chance and Choice, H. Atmanspacher and R. Bishop, eds. (Imprint-Academic, Thorverton, 2002).

    Google Scholar 

  44. M. Castagnino and E. Gunzig, “Minimal irreversible quantum mechanics: An axiomatic formalism, ” Internat. J. Theoret. Phys. 38, 47–92 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagnino, M., Lombardi, O. & Lara, L. The Global Arrow of Time as a Geometrical Property of the Universe. Foundations of Physics 33, 877–912 (2003). https://doi.org/10.1023/A:1025665410999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025665410999

Keywords

Navigation