Skip to main content
Log in

Breast cancer micrometastases: Different interactions of carcinoma cells with normal and cancer patients' bone marrow stromata

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The apparently dormant breast cancer micrometastases in haemopoietic marrow are correlated with distant metastatic carcinoma dissemination. We studied in vitro interactions of carcinoma cells with adjacent stromata, using connective tissue cell cultures from breast and bone marrow samples of normal donors, comparing them to the pericancerous breast tissue and bone marrows of 12 selected patients with invasive breast carcinomas. Cancer cells were detected by immunocytochemistry and RT-PCR in all the bone marrows and in most blood samples of the studied patients. We monitored the growth and interaction of carcinoma MCF-7 cells with the stromata. The normal breast stroma sustained typical massive cancer growth. The pericancerous breast stroma induced the invasive mesenchymal pattern of growth. Normal bone marrow stroma induced the same conversion and was highly adhesive, retaining the cells in the stroma, but carcinoma patients' bone marrow stromata underwent low adhesive interactions with cancer cells, releasing them potentially into the circulation. The semi-quantitative RT-PCR indicated an enhanced expression of the hepatocyte growth factor and its receptor c-met in breast and bone marrow stromata of cancer patients. The input of cancer cells into the normal bone marrow may induce modifications of the local microenvironment, favourable for growth and release of carcinoma cells into the systemic circulation, which correlate with the poor prognosis of patients with bone marrow micrometastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greaves M. Cancer. The Evolutionary Legacy. Oxford: Oxford University Press 2000.

    Google Scholar 

  2. Ronnov—Jessen L, Petersen OW, Bissel MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stroma reaction. Physiol Rev 1996; 76: 69–125.

    PubMed  CAS  Google Scholar 

  3. Wernert N. The multiple roles of tumour stroma. Virchows Arch 1997; 430: 433–43.

    Article  PubMed  CAS  Google Scholar 

  4. Dingemans KP, Zeeman—Boeschoten IM, Keep RF et al. Transplantation of colon carcinoma into granulation tissue induces an invasive morphotype. Int J Cancer 1993; 54: 1010–6.

    PubMed  CAS  Google Scholar 

  5. Yoshinaga Y, Matsuno Y, Fujita S et al. Immunohistochemical detection of hepatocyte growth factor/scatter factor in human cancerous and inflammatory lesions of various organs. Jpn J Cancer Res 1993; 84: 1150–8.

    PubMed  CAS  Google Scholar 

  6. Singer C, Rasmussen A, Smith HS. Malignant breast epithelium selects for insulin—like growth factor II expression in breast stroma: Evidence for paracrine function. Cancer Res 1995; 55: 2448–54.

    PubMed  CAS  Google Scholar 

  7. Foulds L. The experimental study of tumour progression. Cancer Res 1954; 14: 327–39.

    PubMed  CAS  Google Scholar 

  8. Magennis DP. Angiogenesis: A new prognostic marker for breast cancer. Br J Biomed Sci 1998; 55: 214–20.

    PubMed  CAS  Google Scholar 

  9. Abou—Ghalia A, Silva O, Vredenburgh JJ et al. Advances in the detection of marrow micrometastases in breast cancer. Cancer Ther Control 1994; 4: 43–7.

    Google Scholar 

  10. Mansi JL, Gogas H, Bliss JM et al. Outcome of primary—breast—cancer patients with micrometastases: a long—term follow—up study. Lancet 1999; 354: 197–202.

    Article  PubMed  CAS  Google Scholar 

  11. Pantel K, Cote RJ, Fodstad O. Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 1999; 91: 1113–24.

    Article  PubMed  CAS  Google Scholar 

  12. Braun S, Kentenich C, Janni W et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumour cells in bone marrow of high—risk breast cancer patient. J Clin Oncol 2000; 18: 80–6.

    PubMed  CAS  Google Scholar 

  13. Pantel K, Schlimok G, Braun S et al. Differential expression of proliferation—associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 1993; 85: 1419–23.

    PubMed  CAS  Google Scholar 

  14. Braun S, Pantel K. Biological characteristics of micrometastatic cancer cells in bone marrow. Cancer Metast Rev 1999; 18: 75–90.

    Article  CAS  Google Scholar 

  15. Lord B. Biology of the hematopoietic stem cell. In Potten CS (ed): Stem Cells. London: Academic Press 1997; 401–22.

  16. Brooks B, Bundred NJ, Howell A et al. Investigation of mammary epithelial cell—bone marrow stroma interactions using primary human cell culture as a model. Int J Cancer 1997; 73: 690–6.

    Article  PubMed  CAS  Google Scholar 

  17. Hombauer H, Minguell JJ. Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells. Br J Cancer 2000; 82: 1290–6.

    Article  PubMed  CAS  Google Scholar 

  18. Luppi M, Morselli M, Bandieri E et al. Sensitive detection of circulating breast cancer cells by reverse—transcriptase polymerase chain reaction of maspin gene. Ann Oncol 1996; 7: 619–24.

    PubMed  CAS  Google Scholar 

  19. Zippelius A, Kufer P, Honold G et al. Limitations of reverse—transcriptase polymerase chain reaction analyses for detection of micrometastatic epithelial cancer cells in bone marrow. J Clin Oncol 1997; 15: 2701–8.

    PubMed  CAS  Google Scholar 

  20. Tuxhorn JA, Ayala GE, Smith MJ et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodelling. Clin Cancer Res 2002; 8: 2912–23.

    PubMed  CAS  Google Scholar 

  21. Siler U, Seiffer M, Puch S et al. Characterization and functional analysis of laminin isoforms in human bone marrow. Blood 2000; 96: 4194–203.

    PubMed  CAS  Google Scholar 

  22. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–4.

    Article  PubMed  CAS  Google Scholar 

  23. Sappino AP, Schürch W, Gabbiani G. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 1990; 63: 144–61.

    PubMed  CAS  Google Scholar 

  24. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181: 67–73.

    Article  PubMed  CAS  Google Scholar 

  25. Pelkey TJ, Frierson HF, Bruns DE. Molecular and immunological detection of circulating tumour cells and micrometastases from solid tumors. Clin Chem 1996; 42: 1369–81.

    PubMed  CAS  Google Scholar 

  26. Price JE. Host—tumour interactions in the progression of breast cancer metastases. In Vivo 1994; 8: 145–54.

    PubMed  CAS  Google Scholar 

  27. van Roozendaal CE, van Ooijen B, Klijn JG et al. Stromal influences on breast cancer cell growth. Br J Cancer 1992; 65: 77–81.

    PubMed  CAS  Google Scholar 

  28. Shekhar MPV, Werdell J, Santner SJ et al. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumour development and progression. Cancer Res 2001; 61: 1320–6.

    PubMed  CAS  Google Scholar 

  29. van Roozendaal CE, Gillis AJ, Klijn JG et al. Loss of imprinting of IGF2 and not H19 in breast cancer, adjacent normal tissue and derived fibroblast cultures. FEBS Lett 1998; 437: 107–11.

    Article  PubMed  CAS  Google Scholar 

  30. Brouty—Boye D, Magnien V. Myofibroblast and concurrent ED—B fibronectin phenotype in human stromal cells cultures from nonmalignant and malignant breast tissue. Eur J Cancer 1994: 30A: 66–73.

    Article  PubMed  CAS  Google Scholar 

  31. Sesslar SP, Nakamura T, Byers S. Regulation of fibroblast hepatocyte growth factor/scatter factor expression by human breast carcinoma cell lines and peptide growth factors. Cancer Res 1993; 53: 1233–8.

    Google Scholar 

  32. Bellusci S, Moens G, Gaudino G et al. Creation of an hepatocyte growth factor/scatter factor autocrine loop in carcinoma cells induces invasive properties associated with increased tumorigenicity. Oncogene 1994; 9: 1091–9.

    PubMed  CAS  Google Scholar 

  33. Jin L, Fuchs A, Achnitt SJ et al. Expression of scatter factor and c—met receptor in benign and malignant breast tissue. Cancer 1997; 79: 749–760.

    Article  PubMed  CAS  Google Scholar 

  34. Tokunou M, Niki T, Egychi K et al. c—MET expression in myofibroblasts — role in autocrine activation and prognostic significance in lung adenocarcinoma. Am J Pathol 2001; 158: 1451–63.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Borojevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicola, MH.A., Bizon, R., Machado, J.J. et al. Breast cancer micrometastases: Different interactions of carcinoma cells with normal and cancer patients' bone marrow stromata. Clin Exp Metastasis 20, 471–479 (2003). https://doi.org/10.1023/A:1025462417256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025462417256

Navigation