Skip to main content
Log in

Regularization Techniques for Numerical Approximation of PDEs with Singularities

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The rate of convergence for numerical methods approximating differential equations are often drastically reduced from lack of regularity in the solution. Typical examples are problems with singular source terms or discontinuous material coefficients. We shall discuss the technique of local regularization for handling these problems. New numerical methods are presented and analyzed and numerical examples are given. Some serious deficiencies in existing regularization methods are also pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, S., Gottlieb, D., and Tadmor, E. (1986). Spectral Methods for Discontinuous Problems. Proceedings of the 1985 Conference on Numerical Method for Fluid Dynamics II, Clarendon Press, Oxford, pp. 101-135.

    Google Scholar 

  2. Beale, J. T., and Majda, A. (1982). Vortex methods. II: Higher order accuracy in two and three dimensions. Math. Comput. 39, 29-52.

    Google Scholar 

  3. Bensoussan, A., Lions, J.-L., and Papanicolaou, G. (1978). Asymptotic Analysis for Periodic Structures, North-Holland.

  4. Beyer, R. P., and LeVeque, R. J. (1992). Analysis of a one-dimensional model for the immersed boundary method. SIAM J. Numer. Anal. 29, 332-364.

    Google Scholar 

  5. Beylkin, G. (1995). On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. A. 2, 363-381.

    Google Scholar 

  6. Ditkowski, A., Dridi, K., and Hesthaven, J. S. (2001). Convergent Cartesian grid methods for Maxwell's equations in complex geometries. J. Comput. Phys. 170, 39-80.

    Google Scholar 

  7. Glowinski, R., Pan, T. W., Hesla, T. I., and Joseph, D. D. (1999). A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphas. Flow 25, 755-794.

    Google Scholar 

  8. Kreiss, H.-O., and Lorenz, J. (1989). Initial-Boundary Value Problems and the Navier–Stokes Equations, Academic Press, New York.

    Google Scholar 

  9. Ledfelt, G. (2001). Hybrid Time-Domain Methods and Wire Models for Computational Electromagnetics, TRITA-NA-0106, KTH.

  10. LeVeque, R. J., and Li, Z. (1994). The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019-1044.

    Google Scholar 

  11. Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220-252.

    Google Scholar 

  12. PeskinC. S. (2002). The immersed boundary method. Acta Numerica 11, 479-517.

    Google Scholar 

  13. Sussman, M., Smereka, P., and Osher, S. (1994). A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146-159.

    Google Scholar 

  14. Taflove, A., and Hagness, S. C. (2000). Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed., Artech House, Norwood, Massachusetts.

    Google Scholar 

  15. Tornberg, A.-K. (2000). Interface tracking methods with applications to multiphase flows. Ph.D. thesis, Department of Numerical Analysis and Computer Science, Royal Institute of Technology (KTH), Stockholm, Sweden. ISBN 91-7170-558-9, TRITA-NA 0010.

    Google Scholar 

  16. Tornberg, A.-K. (2002). Multi-dimensional quadrature of singular and discontinuous functions. BIT 42, 644-669.

    Google Scholar 

  17. Tornberg, A.-K., and Engquist, B. (2000). A finite element based level set method for multiphase flow applications. Comput. Vis. Sci. 3, 93-101.

    Google Scholar 

  18. Unverdi, S. O., and Tryggvason, G. (1992). A front-tracking method for viscous incompressible, multi-fluid flows. J. Comput. Phys. 100, 25-37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tornberg, AK., Engquist, B. Regularization Techniques for Numerical Approximation of PDEs with Singularities. Journal of Scientific Computing 19, 527–552 (2003). https://doi.org/10.1023/A:1025332815267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025332815267

Navigation