Skip to main content
Log in

P-Glycoprotein Attenuates Brain Uptake of Substrates After Nasal Instillation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Previous literature has suggested the absence of an effective barrier between the nasal mucosa and the brain for compounds administered via the nasal route. These experiments were conducted to elucidate the role of the blood-brain barrier efflux transporter P-glycoprotein (P-gp) in attenuating delivery of P-gp substrates to the brain after nasal administration in mice.

Methods. Brain uptake of several radiolabeled P-gp substrates, was measured in P-gp-deficient and P-gp-competent mice following nasal instillation. Additional experiments were performed to assess the potential for enhancing brain uptake by inhibiting P-gp with intranasal rifampin.

Results. All substrates examined were measurable in brain tissue within 2 min. Substrate accumulation in P-gp-deficient mice was higher than in P-gp-competent animals; the degree to which P-gp attenuated brain uptake after nasal administration was similar to that during in situ brain perfusion. Co-administration of rifampin enhanced brain uptake of relevant substrates, and resulted in complete elimination of P-gp-mediated transport for 3H- verapamil.

Conclusions. P-gp attenuates brain accumulation of intranasally-administered P-gp substrates. Thus, biochemical components of the blood-brain barrier, such as efflux transporters may influence brain penetration after nasal administration. Co-administration of a P-gp inhibitor enhances the brain uptake of relevant substrates, suggesting that the transporter barrier functions may be reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. W. Brightman. The anatomic basis of the blood-brain barrier. E. Neuwelt, (ed). Implications of the Blood-Brain Barrier and its Manipulation, volume 1. Plenum Publishing Corp., New York, 1989.

    Google Scholar 

  2. H. S. Chow, N. Anavy, and A. Villalobos. Direct nose-brain transport of benzoylecgonine following intranasal administration in rats. J. Pharm. Sci. 90:1729-1735 (2001).

    Google Scholar 

  3. A. Hussain, R. Kimuara, and C. H. Huang. Nasal absorption of testosterone in rats. J. Pharm. Sci. 73:1300-1302 (1984).

    Google Scholar 

  4. M. Dahlin, U. Bergman, B. Jansson, E. BjÖrk, and E. Brittebo. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm. Res. 17:737-742 (2000).

    Google Scholar 

  5. H. S. Chow, Z. Chen, and G. T. Matsuura. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J. Pharm. Sci. 88:754-758 (1999).

    Google Scholar 

  6. A. Minn, S. LeClerc, J. M. Heydel, A. L. Minn, C. Denizot, M. Cattarelli, P. Netter, and D. Gradinaru. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J. Drug Target. 10:285-296 (2002).

    Google Scholar 

  7. A. A. Hussain. Intranasal drug delivery. Adv. Drug Deliv. Rev. 29:39-49 (1998).

    Google Scholar 

  8. L. Hastings and J. Evans. Accumulation of Cd (II) in the CNS depending upon the route of administration: intraperitoneal, intratracheal, or intranasal. Fund. Appl. Toxicol. 19:275-278 (1992).

    Google Scholar 

  9. S. Perlman, N. Sun, and E. M. Barnett. Spread of MHV-JHM from nasal cavity to white matter of spinal cord. Transneuronal movement and involvement of astrocytes. Adv. Exp. Med. Biol. 380:73-78 (1995).

    Google Scholar 

  10. R. G. Thorne, C. R. Emory, T. A. Ala, and W. H. I. I. Frey. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 692:278-282 (1995).

    Google Scholar 

  11. L. Illum. Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 1:1-18 (2000).

    Google Scholar 

  12. S. Mathison, R. Nagilla, and U. B. Kompella. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J. Drug Target. 5:415-441 (1998).

    Google Scholar 

  13. R. H. Enting, R. M. Hoetelmans, J. M. Lange, D. M. Burger, J. H. Beijnen, and P. Portegies. Antiretroviral drugs and the central nervous system. AIDS 12:1941-1955 (1998).

    Google Scholar 

  14. G. Lee, S. Dallas, M. Hong, and R. Bendayan. Drug Transporters in the Central Nervous System: Brain Barriers and Brain Parenchyma Considerations. Pharmacol. Rev. 53:569-596 (2001).

    Google Scholar 

  15. T. Sakane, M. Akizuki, S. Yamashita, T. Nadai, M. Hashida, and H. Sezaki. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem. Pharm. Bull. (Tokyo) 39:2456-2458 (1991).

    Google Scholar 

  16. T. Seki, N. Sato, T. Hasegawa, T. Kawaguchi, and K. Juni. Nasal absorption of zidovudine and its transport to cerebrospinal fluid in rats. Biol. Pharm. Bull. 17:1135-1137 (1994).

    Google Scholar 

  17. S. Doppenschmitt, P. Langguth, C. G. Regardh, T. B. Andersson, C. Hilgendorf, and H. Spahn-Langguth. Characterization of binding properties to human P-glycoprotein: development of a [3H]verapamil radioligand-binding assay. J. Pharmacol. Exp. Ther. 288:348-357 (1999).

    Google Scholar 

  18. C. Dagenais, C. Rousselle, G. M. Pollack, and J. M. Scherrmann. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J. Cereb. Blood Flow Metab. 20:381-386 (2000).

    Google Scholar 

  19. C. Dagenais, J. Zong, J. Ducharme, and G. M. Pollack. Effect of mdr1a P-glycoprotein gene disruption, gender, and substrate concentration on brain uptake of selected compounds. Pharm. Res. 18:957-963 (2001).

    Google Scholar 

  20. D. Lawrence. Intranasal delivery could be used to administer drugs directly to the brain. Lancet 359:1674(2002).

    Google Scholar 

  21. W. H. Frey. Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv. Technol. 2:46-49 (2002).

    Google Scholar 

  22. R. G. Thorne, C. R. Emory, T. A. Ala, and W. H. I. I. Frey. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 692:278-282 (1995).

    Google Scholar 

  23. S. Mathison, R. Nagilla, and U. B. Kompella. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J. Drug Target. 5:415-441 (1998).

    Google Scholar 

  24. A. Minn, S. LeClerc, J. M. Heydel, A. L. Minn, C. Denizot, M. Cattarelli, P. Netter, and D. Gradinaru. Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J. Drug Target. 10:285-296 (2002).

    Google Scholar 

  25. J. Gu, Q. Y. Zhang, M. B. Genter, T. W. Lipinskas, M. Negishi, D. W. Nebert, and X. Ding. Purification and characterization of heterologously expressed mouse CYP2A5 and CYP2G1: role in metabolic activation of acetaminophen and 2,6-dichlorobenzo-nitrile in mouse olfactory mucosal microsomes. J. Pharmacol. Exp. Ther. 285:1287-1295 (1998).

    Google Scholar 

  26. V. Longo, M. Ingelman-Sundberg, G. Amato, A. Salvetti, and P. G. Gervasi. Effect of starvation and chlormethiazole on cytochrome p450s of rat nasal mucosa. Biochem. Pharmacol. 59:1425-1432 (2000).

    Google Scholar 

  27. J. A. Bond, J. R. Harkema, and V. I. Russel. Regional distribution of xenobiotic metabolizing enzymes in respiratory airways of dogs. Drug Metab. Dispos. 16:116-124 (1988).

    Google Scholar 

  28. P. G. Gervasi, V. Longo, F. Naldi, G. Panattoni, and F. Ursino. Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa. Biochem. Pharmacol. 41:177-184 (1991).

    Google Scholar 

  29. M. A. Wioland, J. Fleury-Feith, P. Corlieu, F. Commo, G. Monceaux, J. Lacau-St-Guily, and J. F. Beraudin. CFTR, MDR1 and MRP1 immunolocalization in normal human nasal respiratory mucosa. J. Histochem. Cytochem. 48:1215-1222 (2000).

    Google Scholar 

  30. J. Zong. P-glycoprotein and Brain Uptake of Pharmaceuticals. Doctoral dissertation, University of NorthCarolina, Chapel Hill, North Carolina, 2002.

    Google Scholar 

  31. Q. Qu and F. J. Sharom. FRET analysis indicates that the two ATPase active sites of the P-glycoprotein multidrug transporter are closely associated. Biochemistry 40:1413-1422 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary M. Pollack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graff, C.L., Pollack, G.M. P-Glycoprotein Attenuates Brain Uptake of Substrates After Nasal Instillation. Pharm Res 20, 1225–1230 (2003). https://doi.org/10.1023/A:1025053115583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025053115583

Navigation