Skip to main content
Log in

Compound Profiling for P-Glycoprotein at the Blood–Brain Barrier Using a Microplate Screening System

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The purpose of this study was to establish a fluorescent dye (calcein-acetoxymethylester; calcein-AM)-based assay to rapidly screen compounds for interactions with p-glycoprotein (p-gp) at the blood-brain barrier and to determine whether such an assay can be useful for kinetic analysis.

Methods. Porcine brain capillary endothelial cells (PBCECs) were isolated and cultured in 96-well plates. Cells were incubated with calcein-AM in the absence and presence of substrates and inhibitors of ABC transporters and the extent of intracellularly appearing fluorescence was monitored with a fluorescence plate reader in a time- and a concentration-dependent manner.

Results. PBCECs showed stable expression of p-gp and as a result calcein-AM was extruded by the cells. In the presence of p-gp substrates and inhibitors a significant increase of intracellular fluorescence was observed (decreased calcein-AM efflux), the increase being well correlated with the p-gp affinity of the compounds used. Inhibitors of Mrp1 and Mrp2 did not influence fluorescence intensity. Time-dependent readouts and Michaelis-Menten kinetic analysis separated inhibitors into those showing competitive, mixed and non-competitive inhibition of p-glycoprotein-mediated transport.

Conclusion. The calcein-AM-assay based on PBCECs can be used as a rapid microplate screening system for interactions of drugs with p-glycoprotein at the blood-brain barrier and represents therefore a useful tool in the profiling of drugs. In addition, convenient kinetic assays can provide information about the mode of interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. H. Schinkel. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv. Drug. Deliv. Rev. 36:179-194 (1999).

    Google Scholar 

  2. D. S. Miller, S. Nobmann, H. Gutmann, M. TÖrÖk, J. Drewe, and G. Fricker. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol. Pharmacol. 58:1357-1367 (2000).

    Google Scholar 

  3. E. M. Taylor. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin. Pharmacokinet. 41:81-92 (2002).

    Google Scholar 

  4. M. Demeule, D. Shedid, E. Beaulieu, R. F. Del Maestro, A. Moghrabi, P. B. Ghosn, R. Moumdjian, F. Berthelet, and R. Beliveau. Expression of multidrug-resistance p-glycoprotein (MDR1) in human brain tumors. Int. J. Cancer 93:62-66 (2001).

    Google Scholar 

  5. G. A. Scarborough. Drug-stimulated ATPase activity of the human p-glycoprotein. J. Bioenerg. Biomembr. 27:37-41 (1995).

    Google Scholar 

  6. R. B. Kim, M. F. Fromm, C. Wandel, B. Leake, A. J. Wood, D. M. Roden, and G. R. Wilkinson. The drug transporter p-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 101:289-294 (1998).

    Google Scholar 

  7. D. J. Begley, D. Lechardeur, Z. D. Chen, C. Rollinson, M. Bardoul, F. Roux, D. Scherman, and N. J. Abbott. Functional Expression of p-glycoprotein in an immortalised cell line of rat brain endothelial cells, RBE4. J. Neurochem. 67:988-995 (1996).

    Google Scholar 

  8. J. S. Lee, K. Paull, M. Alvarez, C. Hose, A. Monks, M. Grever, A. T. Fojo, and S. E. Bates. Rhodamine efflux patterns predict p-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 46:627-638 (1994).

    Google Scholar 

  9. G. Liminga, P. Nygren, and R. Larsson. Microfluorometric evaluation of calcein acetoxymethyl ester as a probe for p-glycoprotein-mediated resistance: effects of cyclosporin A and its non-immunosuppressive analogue SDZ PSC 833. Exp. Cell Res. 212:291-296 (1994).

    Google Scholar 

  10. R. C. Scaduto Jr. and L. W. Grotyohann. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 76:469-477 (1999).

    Google Scholar 

  11. M. Essodaigui, H. J. Broxterman, and A. Garnier-Suillerot. Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and p-glycoprotein. Biochemistry 37:2243-2250 (1998).

    Google Scholar 

  12. J. Huwyler, J. Drewe, C. Klusemann, and G. Fricker. Evidence for p-glycoprotein-modulated penetration of morphine-6-glucuronide into brain capillary endothelium. Br. J. Pharm. 118:1879-1885 (1996).

    Google Scholar 

  13. H. Franke, H.-J. Galla, and C. T. Beuckmann. Primary cultures of brain microvessel endothelial cells: a valid and flexible method to study drug transport through the blood-brain barrier in vitro. Brain Res. Prot. 5:248-256 (2000).

    Google Scholar 

  14. J. Gabrielsson and D. Weiner. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Application, Swedish Pharmaceutical Society, Stockholm, 1997.

    Google Scholar 

  15. E. Eneroth, ÅstrÖm, J. Hoogstraate, D. Schrenk, S. Conrad, H.-M. Kauffmann, and K. Gjellan. Evaluation of a vincristine resistant caco-2 cell line for use in a calcein-AM extrusion screening assay for p-glycoprotein interaction. Eur. J. Pharm. Sci. 12:205-214 (2001).

    Google Scholar 

  16. A. H. Schinkel, E. Wagenaar, C. A. A. M. Mol, and L. Deemter. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517-2524 (1996).

    Google Scholar 

  17. Tsuji and I. Tamai. Blood-brain barrier function of p-glycoprotein. Adv. Drug Deliv. Rev. 25:287-298 (1997).

    Google Scholar 

  18. J. P. Cordon-Cardo, O'Brien, D. Casals, L. Rittman-Grauer, J. L. Biedler, M. R. Melamed, and J. R. Bertino. Multidrug-resistance gene (p-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc. Natl. Acad. Sci. USA 86:695-698 (1989).

    Google Scholar 

  19. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Immunohistochemical localization in normal tissues of different epitopes in the multidrug transport protein P170: evidence for localization in brain capillaries and crossreactivity of one antibody with a muscle protein. J. Histochem. Cytochem. 37:159-164 (1989).

    Google Scholar 

  20. S. Fellner, B. Bauer, D. S. Miller, M. Schaffrik, M. FankhÄnel, T. Spruss, G. Bernhardt, C. Graeff, L. FÄrber, H. Gschaidmeier, A. Buschauer, and G. Fricker. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest. 110:1309-1318 (2002).

    Google Scholar 

  21. D. Lechardeur, B. Phung-Ba, P. Wils, and D. Scherman. Detection of the multidrug resistance p-glycoprotein in healthy tissue: the example of the blood-brain barrier. Ann. Biol. Clin. (Paris) 54:31-36 (1996).

    Google Scholar 

  22. A. Seelig. A general pattern for substrate recognition by p-glycoprotein. Eur. J. Biochem. 251:252-261 (1998).

    Google Scholar 

  23. S. V. Ambudkar, S. Dey, C. A. Hrycyna, M. Ramachandra, I. Pastan, and M. M. Gottesman. Biochemical, cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 39:361-398 (1999).

    Google Scholar 

  24. F. Tiberghien and F. Loor. Ranking of p-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs 7:568-578 (1996).

    Google Scholar 

  25. M. Lemaire, A. Bruelisauer, P. Guntz, and H. Sato. Dose-dependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother. Pharmacol. 38:481-486 (1996).

    Google Scholar 

  26. M. Lemaire and J. P. Tillement. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J. Pharm. Pharmacol. 34:715-718 (1982).

    Google Scholar 

  27. J. W. Polli, S. A. Wring, J. E. Humphreys, L. Huang, J. B. Morgan, L. O. Webster, and C. S. Serabjit-Singh. Rational use of in vitro p-glycoprotein assays in drug discovery. J. Pharmacol. Exp. Ther. 299:6220-6228 (2001).

    Google Scholar 

  28. R. Evers, M. Kool, A. J. Smith, L. van Deemter, M. de Haas, and P. Borst. Inhibitory effect of the reversal agents V-104, GF120918 and Pluronic L61 on MDR1 P-gp-, MRP1-and MRP2-mediated transport. Br. J. Cancer 83:366-374 (2002).

    Google Scholar 

  29. A. Regina, A. Koman, M. Piciotti, B. El Hafny, M. S. Center, R. Bergmann, P.-O. Couraud, and F. Roux. Mrp1 multidrug resistance-associated protein and p-glycoprotein expression in rat brain microvessel endothelial cells. J. Neurochem. 71:705-715 (1998).

    Google Scholar 

  30. T. EisenblÄtter and H.-J. Galla. A new multidrug resistance protein at the blood-brain barrier. Biochem. Biophys. Res. Commun. 293:1273-1278 (2002).

    Google Scholar 

  31. S. Michelson and D. Slate. A mathematical model for the inhibition of the multidrug resistance-associated p-glycoprotein pump. Bull. Math. Biol. 56:207-223 (1994).

    Google Scholar 

  32. A. M. Taylor, J. Storm, L. Soceneantu, K. J. Linton, M. Gabriel, C. Martin, J. Woodhouse, E. Blott, C. F. Higgins, and R. Callaghan. Detailed characterization of cystein-less p-glycoprotein reveals subtle pharmacological differences in function from wild-type protein. Br. J. Pharmacol. 134:1609-1618 (2001).

    Google Scholar 

  33. F. J. Sharom. The p-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160:161-175 (1997).

    Google Scholar 

  34. A. B. Shapiro, K. Fox, P. Lam, and V. Ling. Stimulation of p-glycoprotein-mediated drug transport by prazosin and progesterone-evidence for a third drug-binding site. Eur. J. Biochem. 259:841-850 (1999).

    Google Scholar 

  35. B. Martin, G. Berridge, C. F. Higgins, P. Mistry, P. Charlton, and R. Callaghan. Communication between multiple drug binding sites on p-glycoprotein. Mol. Pharmacol. 58:624-632 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Fricker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, B., Miller, D.S. & Fricker, G. Compound Profiling for P-Glycoprotein at the Blood–Brain Barrier Using a Microplate Screening System. Pharm Res 20, 1170–1176 (2003). https://doi.org/10.1023/A:1025040712857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025040712857

Navigation