Skip to main content
Log in

The Gigantocellular Depressor Area Revisited

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. In studies conducted with Dr Donald Reis we described a functionally distinct region of the rat medullary reticular formation that we called the Gigantocellular Depressor Area (GiDA). The GiDA was defined as a region from which vasodepressor and sympathoinhibitory responses were evoked by nanoinjections of glutamate. We later showed that cells in the GiDA project to autonomic nuclei in the medulla, brainstem, and spinal cord, including the intermediolateral cell column. We also showed that kainic acid lesions of the GiDA induce hypertension and block the baroreceptor reflex evoked by electrical stimulation of the aortic depressor nerve. The present studies describe the effects of muscimol nanoinjections into the GiDA.

2. Nanoinjections of muscimol were made in the GiDA of anesthetized rats and changes in arterial pressure, heart rate, and responses to aortic depressor nerve stimulation were measured.

3. Bilateral nanoinjections of muscimol into the GiDA evoke an increase in arterial pressure and lead to fulminating hypertension. Unilateral injections of muscimol into the GiDA block the baroreflex response evoked by electrical stimulation of the ipsilateral aortic depressor nerve. However, these unilateral injections of muscimol into the GiDA evoked profound falls in arterial pressure to nearly spinal levels. In spite of this fall in blood pressure, heart rate also decreased significantly and there was not a compensatory tachycardia. Both the arterial pressure and baroreceptor responses required several hours to recover following the muscimol injections.

4. Although these data are consistent with the proposal that the GiDA is critical for the baroreflex, the opposing effects on blood pressure of unilateral and bilateral injections of muscimol are difficult to reconcile with our current models of central sympathetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aicher, S. A., and Drake, C. T. (1999). Clonidine evokes vasodepressor responses via α2-adrenergic receptors in gigantocellular reticular formation. J. Pharmacol. Exp. Ther. 289:688–694.

    PubMed  Google Scholar 

  • Aicher, S. A., and Reis, D. J. (1997). Gigantocellular vasodepressor area is tonically active and distinct from caudal ventrolateral vasodepressor area. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272:R731-R742.

    Google Scholar 

  • Aicher, S. A., Reis, D. J., Nicolae, R., and Milner, T. A. (1995). Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord. J. Comp. Neurol. 363:563–580.

    PubMed  Google Scholar 

  • Aicher, S. A., Reis, D.J. Ruggiero, D. A., and Milner, T. A. (1994). Anatomical characterization of a novely reticulospinal vasodepressor area in the rat medulla oblongata. Neuroscience 60:761–779.

    PubMed  Google Scholar 

  • Blessing, W. W. and Willoughby, J. O. (1985). Inhibiting the rabbit caudal ventrolateral medulla prevents baroreceptor-initiated secretion of vasopressin. J. Physiol. (Lond.) 367:253–265.

    Google Scholar 

  • Chan, S. H. H., and Chan, J. Y. H. (1983). Correlated effects of clonidine on single-neuron activities in the gigantocellular reticular nucleus, arterial pressure and heart rate in the cat. Neurosci. Lett. 40:139–143.

    PubMed  Google Scholar 

  • Chan, S. H. H., Kuo, J. S., Chen, Y. H., and Hwa, J. H. (1980). Modulatory actions of the gigantocellular reticular nucleus on baroreceptor reflexes in the cat. Brain Res. 196:1–9.

    PubMed  Google Scholar 

  • Chan, S. H. H., and Lin, A. M. Y. (1988). Correlated effects of guanabenz on single-neuron activity in the nucleus reticularis gigantocellularis, systemic arterial pressure and heart rate in the rat. Neuropharmacology 27:157–162.

    PubMed  Google Scholar 

  • Cox, B. F., and Brody, M. J. (1988). Evidence for two functionally distinct vasomotor subregions of rostral ventral medulla. Clin. Exp. Hypertens. A 10:11–18.

    PubMed  Google Scholar 

  • Cox, B. F., and Brody, M. J. (1988). Subregions of rostral ventral medulla control arterial pressure and regional hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 257:R635-R640.

    Google Scholar 

  • Cravo, S. L., Morrison, S. F., and Reis, D. J. (1991). Differentiation of two cardiovascular regions within the caudal ventrolateral medulla. Am. J. Physiol. Regul. Intergr. Comp. Physiol. 261:R985-R994.

    Google Scholar 

  • Feldman, P. D. and Moises, H. C. (1988). Electrophysiological evidence for alpha 1-and alpha 2-adrenoceptors in solitary tract nucleus. Am. J. Physiol. 254:H756-H762.

    PubMed  Google Scholar 

  • Gootman, P. M., and Cohen, M. I. (1971). Evoked splanchnic potentials by produced by electrical stimulation of medullary vasomotor regions. Exp. Brain Res. 13:1–14.

    Google Scholar 

  • Gordon, F. J. (1987). Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 252:R628-R633.

    Google Scholar 

  • Guertzenstein, P. G., and Silver, A. (1974). Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J. Physiol. (Lond). 242:489–503.

    Google Scholar 

  • Jansen, A. S. P., Nguyen, X. V., Karpitskiy, V., Mettenleiter, T. C., and Loewy, A. D. (1995). Central command neurons of the sympathetic nervous system: Basis of the fight-or-flight response. Science 270:644–646.

    PubMed  Google Scholar 

  • Kiely, J. M., and Gordon, F. J. (1994). Role of rostral ventrolateral medulla in centrally mediated pressor responses. Am. J. Physiol. Heart Circ. Physiol. 267:H1549-H1556.

    Google Scholar 

  • Korner, P. I, and Head, G. A. (1981). Effects of noradrenergic and serotonergic neurons on blood pressure, heart rate, and baroreceptor heart rate reflex of the conscious rabbit. J. Auton. Nerv. Syst. 3:511–523.

    PubMed  Google Scholar 

  • Kubo, T., Kihara, M., and Misu, Y. (1991). Ipsilateral but not contralateral blockade of excitatory amino acid receptors in the caudal ventrolateral medulla inhibits aortic baroreceptor reflex in rats. Naunyn Schmiedebergs Arch. Pharmacol. 343:46–51.

    PubMed  Google Scholar 

  • Lim, H. C., Chong, O. K., and Chan, S. H. H. (1988). Characterization of α-adrenoceptors in the nucleus reticularis gigantocellularis involved in the cardiovascular depressant effects of guanabenz in the rat. Neuropharmacology 27:243–249.

    PubMed  Google Scholar 

  • Milner, T. A., Rosin, D. L., Lee, A., and Aicher, S. A. (1999). Alpha2A-adrenergic receptors are primarily presynaptic heteroreceptors in the C1 area of the rat rostral ventrolateral medulla. Brain Res. 821:200–211.

    PubMed  Google Scholar 

  • Paxinos, G., and Watson, C. (1986). The Rat Brain in Stereotaxic Coordinates, Academic Press, London.

    Google Scholar 

  • Pilowsky, P. M., Morris, M. J., Minson, J. B., West, M. J., Chalmers, J. P., Willoughby, J. O., and Blessing, W. W. (1987). Inhibition of vasodepressor neurons in the caudal ventrolateral medulla of the rabbit increases both arterial pressure and the release of neuropeptide Y-like immunoreactivity from the spinal cord. Brain Res. 420:380–384.

    PubMed  Google Scholar 

  • Reis, D. J., Morrison, S., and Ruggiero, D. A. (1988). The C1 area of the brainstem in tonic and reflex control of blood pressure. Hypertension 11:18–113.

    Google Scholar 

  • Reis, D. J., Ross, C. A., Ruggiero, D. A., Granata, A. R., and Joh, T. H. (1984). Role of adrenaline neurous of ventrolateral medulla (the C1 group) in the tonic and phasic control of arterial pressure. Clin. Exper. Hypertens. A 6:221–241.

    Google Scholar 

  • Sesoko, S., Muratani, H., Yamazato, M., Teruya, H., Takishita, S., and Fukiyama, K. (1998). Contribution of α2-adrenoceptors in caudal ventrolateral medulla to cardiovascular regulation in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274:R1119-R1124.

    Google Scholar 

  • Stornetta, R. L., Huangfu, D., Rosin, D. L., Lynch, K. R., and Guyenet, P. G. (1995). Alpha-2 adrenergic receptors: Immunohistochemical localization and role in mediating inhibition of adrenergic RVLM presympathetic neurons by catecholamines and clonidine. Ann. N. Y. Acad. Sci. 763:541–551.

    PubMed  Google Scholar 

  • Strack, A. M., Sawyer, W. B., Hughes, J. H., Platt, K. B., and Loewy, A. D. (1989). A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 491:156–162.

    PubMed  Google Scholar 

  • Stremel, R. W., Waldrop, T. G., Richard, C. A., and Iwamoto, G. A. (1990). Cardiorespiratory responses to stimulation of the nucleus reticularis gigantocellularis. Brain Res. Bull. 24:1–6.

    PubMed  Google Scholar 

  • Sun, M. K., and Guyenet, P. G. (1986). Effect of clonidine and gamma-aminobutyric acid on the discharges of medullo-spinal sympathoexcitatory neurons in the rat. Brain Res. 368:1–17.

    PubMed  Google Scholar 

  • Sved, A. F., and Tsukamoto, K. (1992). Tonic stimulation of GABAB receptors in the nucleus tractus solitarius modulates the baroreceptor reflex. Brain Res. 592:37–43.

    PubMed  Google Scholar 

  • Varner, K. J., Rutherford, D. S., Vasquez, E. C., and Brody, M. J. (1992). Identification of cardiovascular neurons in the rostral ventromedial medulla in anesthetized rats. Hypertension 19(Suppl. 2): II193-II197.

    PubMed  Google Scholar 

  • Waldrop, T. G., and Iwamoto, G. A. (1991). Cardiovascular responses to chemical stimulation of the inferior olive in the cat. Brain Res. Bull. 26:667–670.

    PubMed  Google Scholar 

  • Willette, R. N., Punnen, S., Krieger, A. J., and Sapru, H. N. (1984). Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Neuropharmacology 321:169–174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue A. Aicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aicher, S.A. The Gigantocellular Depressor Area Revisited. Cell Mol Neurobiol 23, 479–490 (2003). https://doi.org/10.1023/A:1025011827220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025011827220

Navigation