Skip to main content
Log in

Light-induced behavioral responses (`phototaxis') in prokaryotes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light-induced sensory responses are among the oldest scientific observations on bacterial behavior. Various types of response have been characterized physiologically in detail. However, the molecular basis of this type of response is only slowly emerging. In many of these systems photosynthetic pigments absorb the light. This then generates a signal via electron transport, feeding into a canonical chemotaxis signal transduction pathway. Nevertheless, several examples have been identified in which dedicated photoreceptor proteins do play a role. The intrinsic complexity of some of these signal transduction systems is overwhelming, in part because of the significant apparent redundancy. The genomics information that is now available for several model organisms (in particular Rhodobacter sphaeroides and Synechocystis sp. PCC6803) facilitates obtaining an increasingly detailed view of the molecular basis of the partial reactions that jointly form the basis of this type of elementary behavioral response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbar S, Gaidenko TA, Kang CM, O'Reilly M, Devine KM and Price CW (2001) New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol 183: 1329–1338

    Article  PubMed  CAS  Google Scholar 

  • Armitage JP (1997) Behavioural responses of bacteria to light and oxygen. Arch Microbiol 168: 249–261

    Article  PubMed  CAS  Google Scholar 

  • Armitage JP (1999) Bacterial tactic responses. Adv Microb Physiol 41: 229–289

    Article  PubMed  CAS  Google Scholar 

  • Armitage JP and Evans MCW (1981) The reaction centre in the phototactic and chemotactic responses of Rhodopseudomonas sphaeroides. FEMS Microbiol Lett 11: 89–92

    Article  Google Scholar 

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Spudich EN, Spudich JL, Leclerc M and DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature (London) 411: 786–789

    Article  PubMed  CAS  Google Scholar 

  • Berry RM and Armitage JP (2000) Response kinetics of tethered Rhodobacter sphaeroides to changes in light intensity. Biophys J 78: 1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Takahashi A and Grossman AR (2001a) Light regulation of type IV pilus-dependent motility by chemosensory-like elements in Synechocystis PCC6803 Proc Natl Acad Sci USA 98: 7540–7545

    CAS  Google Scholar 

  • Bhaya D, Takahashi A, Shahi P and Grossman AR (2001b) Novel motility mutants of Synechocystis strain PCC 6803 generated by in vitro transposon mutagenesis. J Bacteriol 183: 6140–6143

    Article  PubMed  CAS  Google Scholar 

  • Bibikov SI, Biran R, Rudd KE and Parkinson JS (1997) A signal transducer for aerotaxis in Escherichia coli. J Bacteriol 179: 4075–4079

    PubMed  CAS  Google Scholar 

  • Bibikov SI, Barnes LA, Gitin Y and Parkinson JS (2000) Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc Natl Acad Sci USA 97: 5830–5835

    Article  PubMed  CAS  Google Scholar 

  • Bogomolni RA, Stoeckenius W, Szundi I, Perozo E, Olson KD and Spudich JL (1994) Removal of transducer Htr I allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci USA 91: 10188–10192

    Article  PubMed  CAS  Google Scholar 

  • Choi JS, Chung YH, Moon YJ, Kim C, Watanabe M, Song PS, Joe CO, Bogorad L and Park YM (1999) Photomovement of the gliding cyanobacterium Synechocystis sp. PCC6803. Photochem Photobiol 70: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Chung YH, Cho MS, Moon YJ, Choi JS, Yoo YC, Park YI, Lee KM, Kang KW and Park YM (2001) ctr1, a gene involved in a signal transduction pathway of the gliding motility in the cyanobacterium Synechocystis sp. PCC6803. FEBS Lett 492: 33–38

    Article  PubMed  CAS  Google Scholar 

  • Clayton RK (1953a) Studies in the phototaxis of Rhodospirillum rubrum. I. Action spectrum, growth in green light andWeber-law adherence. Arch Microbiol 19: 107–124

    CAS  Google Scholar 

  • Clayton RK (1953b) Studies in the phototaxis of Rhodospirillum rubrum.II. The relation between phototaxis and photosynthesis. Arch Microbiol 19: 125–140

    CAS  Google Scholar 

  • Clayton RK (1953c) Studies in the phototaxis of Rhodospirillum rubrum. III. Quantitative relationship between stimulus and response Arch Microbiol 19: 141–165

    CAS  Google Scholar 

  • Clayton RK (1958) On the interplay of environmental factors affecting taxis and mobility in Rhodospirillum rubrum. Arch Microbiol 29: 189–212

    CAS  Google Scholar 

  • Clayton RK (1977) Light and Living Matter. Vol 2: The Biological Part, p 71. Robert E. Krieger Publishing Company, Huntington, New York

    Google Scholar 

  • Clayton RK (2002) Research on photosynthetic reaction centers from 1932 to 1987. Photosynth Res 73: 63–71

    Article  PubMed  CAS  Google Scholar 

  • Delprato AM, Samadani A, Kudrolli A and Tsimring LS (2001) Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Phys Rev Lett 87: 158102–1–158102–4

    Article  CAS  Google Scholar 

  • Ehrenberg GS (1883) Die Infusionstrierchen als vollkommene Organismen (Ed Engelmann TW), p 15. Leipzig

  • Engelmann TW (1883) Bakterium photometricum. Ein Beitrag zur vergleichenden Physiologie des Licht-und Farbensinnes. Pfluegers Arch Gesamte Physiol Menschen Tiere 42: 183–186

    Article  Google Scholar 

  • Falke JJ, Bass RB, Butler SL, Chervitz SA and Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13: 457–512

    Article  PubMed  CAS  Google Scholar 

  • Ferrando ME, Krah M, Marwan W and Oesterhelt D (1993) The methyl-accepting transducer protein Htr I is functionally associated with the photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium. EMBO J 12: 2999–3005

    Google Scholar 

  • Frostl JM and Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174: 50–58

    Article  PubMed  CAS  Google Scholar 

  • Gauden DE and Armitage JP (1995) Electron transport-dependent taxis in Rhodobacter sphaeroides. J Bacteriol 177: 5853–5859

    PubMed  CAS  Google Scholar 

  • Glagolev AN (1984) Bacterial H+-sensing. Trends Biochem Sci 9: 397–400

    Article  CAS  Google Scholar 

  • Grishanin RN, Gauden DE and Armitage JP (1997) Photoresponses in Rhodobacter sphaeroides: role of photosynthetic electron transport. J Bacteriol 179: 24–30

    PubMed  CAS  Google Scholar 

  • Hader DP (1987) Photosensory behavior in procaryotes. Microbiol Rev 51: 1–21

    PubMed  CAS  Google Scholar 

  • Harayama S (1977) Phototaxis and membrane potential in the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 131: 34–41

    PubMed  CAS  Google Scholar 

  • Harayama S and Iino T (1976) Phototactic responses of aerobically cultivated Rhodospirillum rubrum. J Gen Microbiol 94: 173–179

    PubMed  CAS  Google Scholar 

  • Hellingwerf KJ (2000) Key issues in the photochemistry and signalling-state formation of photosensor proteins. J Photochem Photobiol B 54: 94–102

    Article  PubMed  CAS  Google Scholar 

  • Hellingwerf KJ, Hendriks J and Gensch T (2002) On the configurational and conformational changes in photoactive yellow protein that lead to signal generation in Ectothiorhodospira halophila. J Biol Phys 28:395–412

    Article  CAS  Google Scholar 

  • Hitomi K, Okamoto K, Daiyasu H, Miyashita H, Iwai S, Toh H, Ishiura M and Todo T (2000) Bacterial cryptochrome and photolyase: characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res 28: 2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Hoff WD, Jung KH and Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26: 223–258

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Lamparter T, Mittmann F, Hartmann E, Gartner W, Wilde A and Borner TA (1997) A prokaryotic phytochrome. Nature (London) 386: 663

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZY and Bauer CE (1997) Analysis of a chemotaxis operon from Rhodospirillum centenum. J Bacteriol 179: 5712–5719

    PubMed  CAS  Google Scholar 

  • Jiang ZY and Bauer CE (2001) Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein chemoreceptors. J Bacteriol 183: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZY, Gest H and Bauer CE (1997) Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J Bacteriol 179: 5720–5727

    PubMed  CAS  Google Scholar 

  • Jiang ZY, Rushing BG, Bai Y, Gest H and Bauer CE (1998) Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180: 1248–1255

    PubMed  CAS  Google Scholar 

  • Kondou Y, Nakazawa M, Higashi S, Watanabe M and Manabe K (2001) Equal-quantum action spectra indicate fluence-rateselective action of multiple photoreceptors for photomovement of the thermophilic cyanobacterium Synechococcus elongatus. Photochem Photobiol 73: 90–95

    Article  PubMed  CAS  Google Scholar 

  • Kort R, Crielaard W, Spudich JL and Hellingwerf KJ (2000) Colorsensitive motility and methanol release responses in Rhodobacter sphaeroides. J Bacteriol 182: 3017–3021

    Article  PubMed  CAS  Google Scholar 

  • Kort R, Hoff WD, Van West M, Kroon AR, Hoffer SM, Vlieg KH, Crielaard W, Van Beeumen JJ and Hellingwerf KJ (1996) The xanthopsins: a new family of eubacterial blue-light photoreceptors. EMBO J 15: 3209–3218

    PubMed  CAS  Google Scholar 

  • Lengeler JW and Jahreis K (1996) Phosphotransferase systems or PTSs as carbohydrate transport and as signal transduction systems. In: Konings WN, Kaback HR and Lolkema JS (eds) Handbook of Biological Physics, pp 573–598. Elsevier Science, Amsterdam

    Google Scholar 

  • Lux R, Munasinghe VR, Castellano F, Lengeler JW, Corrie JE and Khan S (1999) Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell 10: 1133–1146

    PubMed  CAS  Google Scholar 

  • Mattick JS, Whitchurch CB and Alm RA (1996) The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa -a review. Gene 179: 147–155

    Article  PubMed  Google Scholar 

  • McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55: 49–75

    Article  PubMed  CAS  Google Scholar 

  • Montrone M, Oesterhelt D and Marwan W(1996) Phosphorylationindependent bacterial chemoresponses correlate with changes in the cytoplasmic level of fumarate. J Bacteriol 178: 6882–6887

    PubMed  CAS  Google Scholar 

  • Morton-Firth CJ, Shimizu TS and Bray D (1999) A free-energybased stochastic simulation of the Tar receptor complex. J Mol Biol 286: 1059–1074

    Article  PubMed  CAS  Google Scholar 

  • Nultsch W (1961) Der Einfluss des Lichtes auf die Bewegung der Cyanophyceen. 1. Phototopotaxis von Phormidium autumnale. Planta 56: 632–647

    Article  CAS  Google Scholar 

  • Oh JI and Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39: 1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Oh JI, Eraso JM and Kaplan S (2000) Interacting regulatory circuits involved in orderly control of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 182: 3081–3087

    Article  PubMed  CAS  Google Scholar 

  • Pfennig N (1968) Chromatium akenii (Thiorhodaceae), pp 3–9. Institut für den Wissenschaftlichen Film, Göttingen, Germany

    Google Scholar 

  • Prasad K, Caplan SR and Eisenbach M (1998) Fumarate modulates bacterial flagellar rotation by lowering the free energy difference between the clockwise and counterclockwise states of the motor. J Mol Biol 280: 821–828

    Article  PubMed  CAS  Google Scholar 

  • Ragatz L, Jiang Z-Y, Bauer CE and Gest H (1994) Phototactic purple bacteria. Nature (London) 370: 104

    Article  Google Scholar 

  • Ragatz L, Jiang Z-Y, Bauer CE and Gest H (1995) Macroscopic phototactic behavior of the purple photosynthetic bacterium Rhodospirillum centenum. Arch Microbiol 163: 1–6

    PubMed  CAS  Google Scholar 

  • Ramsing NB, Ferris MJ and Ward DM (2000) Highly ordered vertical structure of Synechococcus populations within the onemillimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66: 1038–1049

    Article  PubMed  CAS  Google Scholar 

  • Rebbapragada A, Johnson MS, Harding GP, Zuccarelli AJ, Fletcher HM, Zhulin IB and Taylor BL (1997) The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci USA 94: 10541–10546

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli S and Armitage JP (1999) Role of the chemosensory pathways in transient changes in swimming speed of Rhodobacter sphaeroides induced by changes in photosynthetic electron transport. J Bacteriol 181: 34–39

    PubMed  CAS  Google Scholar 

  • Sackett MJ, Armitage JP, Sherwood EE and Pitta TP (1997) Photoresponses of the purple nonsulfur bacteria Rhodospirillum centenum and Rhodobacter sphaeroides. J Bacteriol 179: 6764–6768

    PubMed  CAS  Google Scholar 

  • Sprenger WW, Hoff WD, Armitage JP and Hellingwerf KJ (1993) The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein. J Bacteriol 175: 3096–3104

    PubMed  CAS  Google Scholar 

  • Spudich JL (1985) Bacterial Sensory Rhodopsin (SR), a Dual Attractant and Repellent Phototaxis Receptor, pp 119–127. Elsevier Science, Amsterdam

    Google Scholar 

  • Spudich JL (1998) Variations on a molecular switch: transport and sensory signalling by archael rhodopsins. Mol Microbiol 28: 1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Taylor BL (1983) Role of proton motive force in sensory transduction in bacteria. Ann Rev Microbiol 37: 551–573

    Article  CAS  Google Scholar 

  • Taylor BL and Zhulin IB (1998) In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 28: 683–690

    Article  PubMed  CAS  Google Scholar 

  • Taylor BL, Zhulin IB and Johnson MS (1999) Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128

    Article  PubMed  CAS  Google Scholar 

  • Vierstra RD and Davis SJ (2000) Bacteriophytochromes: new tools for understanding phytochrome signal transduction. Semin Cell Dev Biol 11: 511–521

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Churin Y, Schubert H and Borner T (1997) Disruption of a Synechocystis sp. PCC6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS Lett 406: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Yang X-H, Sasarman A, Inokuchi H and Adler J (1996) Non-iron porphyrins cause tumbling to blue light by an Escherichia coli mutant defective in hemG. Proc Natl Acad Sci USA 93: 2459–2463

    Article  PubMed  CAS  Google Scholar 

  • Yao VJ and Spudich JL (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci USA 89: 11915–11919

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara S, Suzuki F, Fujita H, Geng XX and Ikeuchi M (2000) Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 41: 1299–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith P. Armitage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armitage, J.P., Hellingwerf, K.J. Light-induced behavioral responses (`phototaxis') in prokaryotes. Photosynthesis Research 76, 145–155 (2003). https://doi.org/10.1023/A:1024974111818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024974111818

Navigation