Skip to main content
Log in

Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Recent advances in understanding some of the molecular aspects of chromosome segregation during mitosis and meiosis provide a background for investigating potential mechanisms of aneuploidy in mammalian germ cells. Numerous protein kinases and phosphatases have important functions during mitosis and meiosis. Alterations in these enzyme activities may upset the normal temporal sequence of biochemical reactions and cellular organelle modifications required for orderly chromosome segregation. Protein phosphatases 1 (PP1) and 2A (PP2A) play integral roles in regulating oocyte maturation (OM) and the metaphase–anaphase transitions. Mouse oocytes were transiently exposed invitro to different dosages (0, 0.01, 0.1, or 1.0 μg/ml) of the PP1 and PP2A phosphatase inhibitor okadaic acid (OA) during meiosis I and oocytes were cytogenetically analyzed. Significant (p < 0.05) OA dose-response increases in the frequencies of metaphase I (MI) arrested oocytes, MI oocytes with 80 chromatids instead of the normal 20 tetrads, and anaphase I–telophase I (AI–TI) oocytes with two groups of an unequal number of chromatids were found. Analysis of MII oocytes revealed significant (p < 0.05) increases in the frequencies of premature sister chromatid separation, single-unpaired chromatids, and hyperploidy. Besides showing that OA is aneugenic, these data suggest that OA-induced protein phosphatase inhibition upsets the normal kinase–phosphatase equilibrium during mouse OM, resulting in precocious removal of cohesion proteins from chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre H, Van Cauwenberge A, Tsukkitani Y, Mulnard J (1991) Pleiotropic effect of okadaic acid on maturing mouse oocytes. Development 112: 971–980.

    PubMed  CAS  Google Scholar 

  • Alexandru G, Uhlmann F, Metchler K, Poupart MA, Nasmyth K (2001) Phosphorylation of the cohesion subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105: 459–472.

    Article  PubMed  CAS  Google Scholar 

  • Amon A (1999) The spindle checkpoint. Curr Opin Genet Devel 9: 69–75.

    Article  CAS  Google Scholar 

  • Angell RR (1991) Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet 86: 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Bornslaeger EA, Mattei P, Schultz RM (1986) Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev Biol 114: 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K (2000) Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesion Rec8 by separin. Cell 103: 387–398.

    Article  PubMed  CAS  Google Scholar 

  • Cassimeris L (1999) Accessory protein regulation of microtubule dynamics throughout the cell. Curr Opin Cell Biol 11: 134–141.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P (1989) The structure and regulation of protein phosphatases. Annu Rev Biochem 58: 453–509.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Klumpp S, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250: 596–600.

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Holmes CF, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15: 98–102.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Fix O, Koshland D (1997) The metaphase-to-anaphase transition: avoiding a mid-life crisis. Curr Opin Cell Biol 9: 800–806.

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and function of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847.

    Article  PubMed  CAS  Google Scholar 

  • Darwiche N, Freeman LA, Strunnikov A (1999) Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Dekel N (1996) Protein phosphorylation/dephosphorylation in the meiotic cell cycle of mammalian oocytes. Rev Reprod 1: 82–88.

    Article  PubMed  CAS  Google Scholar 

  • De Pennart H, Verlhac MH, Cibert C, Santa Maria A, Maro B (1993) Okadaic acid induces spindle lengthening and disrupts the interaction of microtubules with the kinetochores in metaphase II-arrested mouse oocytes. Dev Biol 157: 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Downs SM, Daniel SAJ, Bornslaeger EA, Hoppe PC, Eppig JJ (1989) Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity. Gamete Res 23: 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Dyban A, Freidine M, Noniashvili E (1997) A cytogenetic study of G1-chromosomes in one-cell stage mouse embryo and in corresponding second polar body. Evaluation of aneuploidy originated in females heterozygous for translocation T[14;15]6Ca. Int J Dev Biol 41: 859–866.

    PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U (1993) Studies on maternal age related aneuploidy in mammalian oocytes and cell cycle control. In: Summer AT, Chandley A C, eds. Chromosomes Today, Vol. 11. London: Chapman & Hall, pp 323–336.

    Google Scholar 

  • Elliott PJ, Ross JS (2001) The proteasome: a new target for novel drug therapies. Am J Clin Pathol 116: 637–646.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Brautigan DL, Lamb NJC (1992) Protein phosphatase type 1 in mammalian cell mitosis: Chromosomal localization and involvement in mitotic exit. J Cell Biol 116: 1421–1430.

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Tsukitani IY, Schorderet-Slatkine S (1991) Induction of M-phase entry of prophase-blocked mouse oocytes through microinjection of okadaic acid, a specific phosphatase inhibitor. Exp Cell Res 192: 75–81.

    Article  PubMed  CAS  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373–428.

    PubMed  CAS  Google Scholar 

  • Goldberg AL (1995) Functions of the proteasome: the lysis at the end of the tunnel. Science 268: 522–523.

    PubMed  CAS  Google Scholar 

  • Grocholova R, Petr J, Rozinek J, Jilek F (1997) The protein phosphatase inhibitor okadaic acid inhibits exit from metaphase II in parthenogenetically activated pig oocytes. J Exp Zool 277: 49–56.

    Article  PubMed  CAS  Google Scholar 

  • Hagting A, den Elzen N, Vodermaier HC, Waizenegger IC, Peters JM, Pines J (2002) Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation byC dc20 to Cdh1. J Cell Biol 157: 1125–1137.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N (1996) Role of c-mos proto-oncogene product in the regulation of mouse oocyte maturation. Horm Res 46: 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Hauf S, Waizenegger IC, Peters JM (2001) Cohesion cleavage by separase required for anaphase and cytokinesis in human cells. Science 293: 1320–1323.

    Article  PubMed  CAS  Google Scholar 

  • Holloway S L (1995) Sister chromatid separation in vivo and in vitro. Curr Opin Genet Dev 5: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Hook EB (1985) Maternal age, paternal age, and human chromosome abnormality: nature, magnitude, etiology, and mechanisms of effects. In: Dellarco VL, Voytek PE, Hollaender A, eds. Aneuploidy: Etiology and Mechanisms. New York: Academic Press, pp 117–132.

    Google Scholar 

  • Hoque MT, Ishikawa F (2001) Human chromatid cohesion component hRad21 is phosphorylated in M phase and associated with metaphase chromosomes. J Biol Chem 276: 5059–5067.

    Article  PubMed  CAS  Google Scholar 

  • Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150: 1233–1250.

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Kumada K, Toda T, Yanagida M (1996) Requirement for PP1 phosphatase and 20 S cyclosome/APC for the onset of anaphase is lessened by the dosage increase of a novel gene sds23+. EMBO J 15: 6629–6640.

    PubMed  CAS  Google Scholar 

  • Jallepalli PV, Waizenegger I, Bunz F et al. (2001) Securin is required for chromosomal stability in human cells. Cell 105: 445–457.

    Article  PubMed  CAS  Google Scholar 

  • Javerzat JP, McGurk G, Cranston G et al. (1999) Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol 19: 5155–5165.

    PubMed  CAS  Google Scholar 

  • Jesenberger V, Jentsch S (2002) Deadlyen counter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 3: 112–121.

    Article  PubMed  CAS  Google Scholar 

  • Kamieniecki RJ, Shanks RM, Dawson DS (2000) Slk19p is necessary to prevent separation of sister chromatids in meiosis I. Curr Biol 10: 1182–1190.

    Article  PubMed  CAS  Google Scholar 

  • Klein F, Mahr P, Galova M et al. (1999) A central role for cohesions in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98: 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Kotani S, Tanaka H, Yasuda H, Todokoro K (1999) Regulation of APC by phosphorylation and regulatory factors. J Cell Biol 146: 791–800.

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Orr-Weaver TL (2001) The molecular basis of sister-chromatid cohesion. Annu Rev Cell Dev Biol 17: 753–777.

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Yokota T, Yamashita M (2002) Analyses of mRNA expression patterns of cohesion subunits Rad21 and Rec8 in mice: germ cell-specicc expression of rec8 mRNA in both male and female mice. Zool Sci 19: 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Losada A, Yokochi T, Kobayashi R, Hirano T (2000) Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesion complexes. J Cell Biol 150: 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Dunn RL, Angeles R, Smith GD (2002) Regulation of spindle formation by active mitogen-activated protein kinase and protein phosphatase 2A during mouse oocyte meiosis. Biol Reprod 66: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Luch A (2002) Cell cycle control and cell division: implications for chemically induced carcinogenesis. Chem Bio Chem 3: 506–516.

    PubMed  CAS  Google Scholar 

  • Mailhes JB, Marchetti F (1994) Chemically-induced aneuploidyin mammalian oocytes. Mutat Res 320: 87–111.

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Yuan ZP (1987) Cytogenetic technique for mouse metaphase II oocytes. Gamete Res 18: 77–83.

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Young D, London SN (1997) 1,2-Propanediol-induced premature centromere separation in mouse oocytes and aneuploidy in one-cell zygotes. Biol Reprod 57: 92–98.

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Young D, London SN (1998) Postovulatory ageing of mouse oocytes in vivo and premature centromere separation and aneuploidy. Biol Reprod 58: 1206–1210.

    Article  PubMed  CAS  Google Scholar 

  • Mailhes JB, Carabatsos MJ, Young D, London DN, Bell M, Albertini D (1999) Taxol-induced meiotic maturation delay, spindle defects, and aneuploidy in mouse oocytes and zygotes. Mutat Res 423: 79–90.

    PubMed  CAS  Google Scholar 

  • Mailhes JB, Hilliard C, Lowery M, London SN (2002) MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes. Cell Chromosome 1: 1–19.

    Article  Google Scholar 

  • Minishull J, Straight A, Rudner AD, Dernburg AF, Belmont A, Murray A W (1996) Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr Biol 6: 1609–1620.

    Article  Google Scholar 

  • Miyazaki WY, Orr-Weaver TL (1994) Sister-chromatid cohesion in mitosis and meiosis. Annu Rev Genet 28: 167–187.

    PubMed  CAS  Google Scholar 

  • Molnar M, Bahler J, Sipiczki M, Kohli J (1995) The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141: 61–73.

    PubMed  CAS  Google Scholar 

  • Moos J, Visconti PW, Moore GD, Schultz RM, Kopf GS (1995) Potential role of mitogen-activated protein kinase (MAP) in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod 53: 692–699.

    Article  PubMed  CAS  Google Scholar 

  • Moses RM (1996) Inhibition of mouse egg chromosome decondensation due to meiotic apparatus derangement induced by the protein phosphatase inhibiti or, okadaic acid. J Exp Zool 276: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Murray A W (1998) MAP kinases in meiosis. Cell 92: 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35: 673–745.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Peters JM, Uhlmann F (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288: 1379–1385.

    Article  PubMed  CAS  Google Scholar 

  • Page AM, Hieter P (1999) The anaphase-promoting complex: new subunits and regulators. Annu Rev Biochem 68: 583–609.

    Article  PubMed  CAS  Google Scholar 

  • Parisi S, McKay MJ, Molnar M et al. (1999) Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol Cell Biol 19: 3515–3528.

    PubMed  CAS  Google Scholar 

  • Paules RS, Buccione R, Moschel RC, Vande Woude GF, Eppig JJ (1989) Mouse mos protooncogene product is present and functions during oogenesis. Proc Natl Acad Sci USA 86: 5395–5399.

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Patzlaff JS, Vallis AJ (1996) Evidence that the endogenous histone H1 phosphate in HeLa mitotic chromosomes is protein phosphate 1, not protein phosphatase 2A. J Cell Sci 109: 1437–1447.

    PubMed  CAS  Google Scholar 

  • Pellestor F, Andreo B, Arnal F, Humeau C, Demaille J (2002) Mechanisms of non-disjunction in human female meiosis: the co-existence of two modes of malsegregation evidenced by the karyotyping of 1397 in-vitro unfertilized oocytes. Hum Reprod 17: 2134–2145.

    Article  PubMed  Google Scholar 

  • Prieto I, Pezzi N, Buesa JM et al. (2002) STAG2 and Rad21 mammalian mitotic cohesions are implicated in meiosis. EMBO Rep 3: 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Rime H, Ozon R (1990) Protein phosphatases are involved in the in vivo activation of histone H1 kinase in mouse oocytes. Dev Biol 141: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Sakurada K, Omoe K, Endo A (1994) Increased incidence of unpartnered single chromatids in metaphase II oocytes in 39, X(XO) mice. Experientia 50: 502–505.

    Article  PubMed  CAS  Google Scholar 

  • Salamanca F, Armendares S (1974) C-bands in human metaphase chromosomes treated by barium hydroxide. Ann Genet 17: 135–136.

    PubMed  CAS  Google Scholar 

  • SchÖnthal S (1992) Okadaic acidSa valuable new tool for the study of signal transduction and cell cycle regulation? New Biol 4: 16–21.

    PubMed  Google Scholar 

  • Schwartz DA, Schultz RM(1991) Stimulatory effect of okadaic acid, and inhibitor of protein phosphorylation in mouse oocytes and one-cell zygotes. Dev Biol 145: 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Shonn MA, McCarroll R, Murray AW (2002) Spo13 protects meiotic cohesion at centromeres in meiosis I. Genes Dev 16: 1659–1671.

    Article  PubMed  CAS  Google Scholar 

  • Smith GD, Sadhu A, Mathies S, Wolf DP (1998) Characterization of protein phosphatases in mouse oocytes. Dev Biol 15: 537–549.

    Article  Google Scholar 

  • Snaith HA, Armstrong CG, Guo Y, Kaiser K, Cohen PT (1996) Decciencyof protein phosphatase 2A uncouples the nuclear and centrosome cycles and prevents attachment of microtubules to the kinetochore in Drosophila microtubule star (mts) embryos. J Cell Sci 109: 3001-3012.

    Google Scholar 

  • Soewarto D, Schimiady H, Eichenlaub-Ritter U (1995) Consequences of non-extrusion of the first polar body and control of the sequential segregation of homologues and chromatids in mammalian oocytes. Hum Reprod 10: 2350–2360.

    PubMed  CAS  Google Scholar 

  • Sonada E, Matsusaka T, Morrison C et al. (2001) Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell 1: 759–770.

    Article  Google Scholar 

  • Stemmann O, Zou H, Gerber SA, Gygi SP, Kirschner MW (2001) Dual inhibition of sister chromatid separation at metaphase. Cell 107: 715–726.

    Article  PubMed  CAS  Google Scholar 

  • Sun Q-Y, Wu G-M, Lai L et al. (2002) Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol Reprod 66: 580–588.

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga T, Nagao K, Kawasaki Y et al. (2000) Characterization of fission yeast cohesion: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev 14: 2757–2770.

    Article  PubMed  CAS  Google Scholar 

  • Toth A, Rabitsch KP, Galova M, Schleiffer A, Buonomo SBC, Nasmyth K (2000) Functional genomics identices monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell 103: 1155–1168.

    Article  PubMed  CAS  Google Scholar 

  • Uhlmann F (2001) Secured cutting: controlling separase at the metaphase to anaphase transition. EMBO Rep 2: 487–492.

    PubMed  CAS  Google Scholar 

  • Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister chromatid separation at anaphase onset is promoted by cleavage of the cohesion subunit Scc1p. Nature 400: 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Vandre DD, Willis VL (1992) Inhibition of mitosis byo kadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase. J Cell Sci 101: 79–91.

    PubMed  CAS  Google Scholar 

  • Van Heemst D, Heyting C (2000) Sister chromatid cohesion and recombination in meiosis. Chromosoma 109: 10–26.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Nurse P (1999) Cohesin Rec8 is required for reductional chromosome segregation in meiosis. Nature 400: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire T, Park C, Caldwell KA, Handel MA (1995) Induced premature G2/M transition in pachytene spermatocytes includes events unique to meiosis. Dev Biol 169: 557–567.

    Article  PubMed  CAS  Google Scholar 

  • Winston NJ, Maro B (1999) Changes in the activityof type 2A protein phosphatases during meiotic maturation and the first mitotic cell cycle in mouse oocytes. Biol Cell 91: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme J, Angell RR (2000)Maternal age and trisomy-a unifying mechanism of formation. Chromosoma 109: 435–438.

    PubMed  CAS  Google Scholar 

  • Yanagida M (1995) Frontier questions about sister chromatid separation in anaphase. BioEssays 17: 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Baart E, Betzendahl, Eichenlaub-Ritter U (1998) Diazepam induces meiotic delay, aneuploidy and predivision of homologues and chromatids in mammalian oocytes. Mutagenesis 13: 567–580.

    PubMed  CAS  Google Scholar 

  • Zernicka-Goetz Maro B (1993) Okadaic acid affects spindle organization in metaphase II-arrested rat oocytes. Exp Cell Res 207: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Zernicka-Goetz M, Verlhac MH, Gerraud G, Kubiak JZ (1997) Protein phosphatases control MAP kinase activation and microtubule organization during rat oocyte maturation. Eur J Cell Biol 72: 30–38.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mailhes, J.B., Hilliard, C., Fuseler, J.W. et al. Okadaic acid, an inhibitor of protein phosphatase 1 and 2A, induces premature separation of sister chromatids during meiosis I and aneuploidy in mouse oocytes in vitro . Chromosome Res 11, 619–631 (2003). https://doi.org/10.1023/A:1024909119593

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024909119593

Navigation