Skip to main content
Log in

Comparisons of quantitative trait locus mapping properties between two methods of recombinant inbred line development

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Theoretical comparisons for quantitativetrait loci (QTL) mapping properties wereconducted among simulated recombinantinbred (RI) populations developed bysingle-hill (SH), complete bulk, and singleseed descent (SSD) procedures by MonteCarlo simulations based on variouspopulation sizes, heritabilities, and QTLeffects. Our simulations includedestimation of QTL effects, QTL positions,and statistical testing power in the RIpopulations by comparing the estimates withpreset values. The simulation resultsshowed that the single hill (SH) bulk andsingle seed descent RI populations weregenerally not significantly different withrespect to quality of estimated QTL effectsand positions. Furthermore, when each RIpopulation had 150 lines, each couldprovide desirable properties for QTLmapping. The results implied that a SH RIpopulation consisting of 75 or moreF2-derived families with two lines perfamily (corresponding population size of150 or above) was appropriate for QTLmapping and was not significantly differentthan a SSD RI population of 150. Thus, theSH method could be used to develop largenumbers of RI lines for achieving betterresults in QTL mapping. Simulations alsoshowed that there was no significantdifference between means using SH methodswith 10 and 100 fruits per family. However, RI populations developed by thecomplete bulk method where F2identities are lost were not suitable forQTL mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, D.W., 1981. Recombinant inbred strains and bilineal congenic strains. In: H.J. Foster, J.D. Small & J.G. Fox (Eds.), The Mouse in Biomedical Research, Vol. 1, pp. 223-239, Academic Press, New York.

    Google Scholar 

  • Burr, B. & F.A. Burr, 1991. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7: 55-60.

    Google Scholar 

  • Burr, B., F.A. Burr, K.H. Thompson, M.C. Albertson & C. Stuber, 1988. Gene mapping with recombinant inbreds in maize. Genetics 118: 519-526.

    Google Scholar 

  • Empig, L.T. & W.R. Fehr, 1971. Evaluation of methods for generation advance in bulk hybrid soybean populations. Crop Sci 11: 51-54.

    Google Scholar 

  • Fehr, W., 1987. Principles of Cultivar Development: Volume 1, Theory and Technique. Macmillan Publishing Co., New York.

    Google Scholar 

  • Haldane, J.B.S., 1919. The combination of linkage values and the calculation of distance between the loci of linked factors. J Genet 8: 299-309.

    Google Scholar 

  • Haldane, J.B.S. & C.H. Waddington, 1931. Inbreding and linkage. Genetics 16: 357-374.

    Google Scholar 

  • Haley, S.D., L.K. Afanador, P.N. Miklas, J.R. Stavely & J.D. Kelly, 1994. Heterogeneous inbred population are useful as source of near-isogenic lines from RAPD marker localization. Theor Appl Genet 88: 337-342.

    Google Scholar 

  • Ittu, M., N.N. Saulescu, I. Hagima, G. Ittu & P. Mustatea, 2000. Association of fusarium head blight resistance with gliadin loci in a winter wheat cross. Crop Sci 40: 62-67.

    Google Scholar 

  • Jansen, R.C., 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.

    Google Scholar 

  • Li, Z.K., S.R.M. Pinson, J.W. Stansel & W.D. Park, 1995. Indentification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet 91: 374-381.

    Google Scholar 

  • Liste, C. & D. Dean, 1993. Recombinant inbred lines for mapping RFLP and phenotype markers in Arabidopsis thaliana. Plant J 4: 745-750.

    Google Scholar 

  • Lubberstedt, T., A.E. Melchinger, C.C. Schon, H. Utz & D. Klein, 1997. QTL mapping in testcrosses of European flint lines of maize. I. Comparison of different testers for forage yield traits. Crop Sci 37: 921-931.

    Google Scholar 

  • Macchiavelli, R. & J.S. Beaver, 2001. Effect of number of seed bulked and population size on genetic variability when using the multiple-seed procedure of SSD. Crop Sci 41: 1513-1516.

    Google Scholar 

  • Mather, K. & J.L. Jinks, 1982. Biometrical Genetics, 3rd Edn. Chapman and Hall, London.

    Google Scholar 

  • Messmer, M.M., R. Seyfarth, M. Keller, G. Schachermayr, M. Winzeler, S. Zanetti, C. Feuillet & B. Keller, 2000. Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100: 419-431.

    Google Scholar 

  • Miklas, P.N., R. Delorme, V. Stone, M.J. Daly, J.R. Stavely, M.J Bassett & J.S. Beaver, 2000. Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population ('Dorado'/XAN 176). J Am Soc Hortic Sci 125: 476-481.

    Google Scholar 

  • Park, S.O., D.P. Coyne, N. Mutlu, G. Jung & J.R. Steadman, 1999. Confirmation of molecular markers and flower color associated with QTL for resistance to common bacterial blight in common beans. Annual Report 42: 5-6.

    Google Scholar 

  • Quarrie, S.A., M. Gulli, C. Calestani, A. Steed & N. Marmiroli, 1994. Location of gene regulating drought-induced abscisic acid production on the long arm of chromosome 5A of wheat. Theor Appl Genet 89: 794-800.

    Google Scholar 

  • Reiter, R.S., J.G.K. Williams, K.A. Feldmann, J.A. Rafalski, S.V. Tinggey & P.A. Scolnik, 1992. Global and local genome mapping in Arabidopsis thialiana by unsing recombinant inbred lines and amplified polymorphic DNAs. Proc Natl Acad USA 89: 1477-1481.

    Google Scholar 

  • Schar, W.V.D., C. Alonso-Blanco, K.M. Leon-Kloosterziel, R.C. Jansen, J.W. Van Ooijen & M. Koonneef, 1997. QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79: 190-200.

    Google Scholar 

  • Shappley, Z.W., J.N. Jenkins, J. Zhu & J.C. McCarty Jr., 1998. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci 4: 153-163.

    Google Scholar 

  • Simko, I., D. Vreugdenhil, C.S. Jung & G.D. May, 1999. Similarity of QTLs detected for in vitro and greenhouse development of potato plants. Mol Breed 5: 417-428.

    Google Scholar 

  • Swarup, K., B.C. Alonso, J.R. Lynn, S.D. Michaels, R.M. Amasino, M. Koornneef & A.J. Millar, 1999. Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J 20: 67-77.

    Google Scholar 

  • Taylor, B.A., D.W. Bailey, M. Cherry, R. Riblet & M. Weight, 1975 Genes for immunoglobulin heavy chain and serum prealbumin protein are linked in mouse. Nature 256: 644-646.

    Google Scholar 

  • Wang, D.L., 1998. A Mixed Model Approach for Mapping QTLs with Epistatic Effects. A dissertation of Zhejiang Agricultural University, Hangzhou.

  • Wang, D., J. Zhu, Z.K. Li & A.H. Paterson, 1999. Mapping QTLs with epistatic effects and QTL-environment interactions by mixed linear model approaches. Theor Appl Genet 99: 1255-1264.

    Google Scholar 

  • Weller, J.I., 1986. Maximum likelihood techniques for mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627-640.

    Google Scholar 

  • Yan, J.Q., J, Zhu, C.X. He, M. Benmoussa, P. Wu, 1998. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97: 267-274.

    Google Scholar 

  • Yin, X., P. Stam, C.J. Dourleijn, M.J. Kropff, 1999. AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99: 244-253.

    Google Scholar 

  • Zeng, Z.B., 1994. Precision mapping of quantitative trait loci. Genetics 136: 1456-1468.

    Google Scholar 

  • Zhu, J., 1998. Mixed model approaches for mapping complex quantitative trait loci. In: L.W. Wang & J.R. Dai (Eds.), Proc. China Nat. Conf. on Plant Breeding, pp. 11-20, Agricultural Science and Technology Press of China, Beijing, China.

    Google Scholar 

  • Zhu, J. & B.S. Weir, 1998. Mixed model approaches for genetic analysis of quatitative traits. In: L.S. Chen, S.G. Ruan & J. Zhu (Eds.), Proc. Int. Conf. Mathematical Biology, pp. 321-330, World Scientific Publishing Co. Singapore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Jenkins, J., Zhu, J. et al. Comparisons of quantitative trait locus mapping properties between two methods of recombinant inbred line development. Euphytica 132, 159–166 (2003). https://doi.org/10.1023/A:1024690711867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024690711867

Navigation