Skip to main content
Log in

Electrophysiological analysis of visual function in mutant mice

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The mouse has become a key animal model for ocular research. This situation reflects the fact that genes implicated in human retinal disorders or in mammalian retinal function may be readily manipulated in the mouse. Visual electrophysiology provides a means to examine retinal function in mutant mice, and stimulation and recording protocols have been developed that allow the activity of many classes of retinal neurons to be examined and which take into account unique features of the mouse retina. Here, we review the mouse visual electrophysiology literature, covering techniques used to record the mouse electroretinogram and visual evoked potential, and how these have been applied to characterize the functional implications of gene mutation or manipulation in the mouse retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cantwell SL. Ferret, rabbit, and rodent anesthesia. Vet Clin North Am 2001; 4: 169–91.

    Google Scholar 

  2. Suckow MA, Danneman P, Brayton C. The Laboratory Mouse. CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  3. Mizota A, Adachi-Usami E. Effect of body temperature on electroretinogram of mice. Invest Ophthalmol Vis Sci 2002; 43: 3754–7.

    Google Scholar 

  4. Niemeyer G. The function of the retina in the perfused eye. Doc Ophthalmologica 1975; 39: 53–116.

    Google Scholar 

  5. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography. Invest Ophthalmol Vis Sci 1979; 18: 988–91.

    Google Scholar 

  6. Goto Y. An electrode to record the mouse cornea electroretinogram. Doc Ophthalmol 1995–96; 91: 147–54.

    Google Scholar 

  7. Bayer AU, Cook P, Brodie SE, Maag K-P, Mittag T. Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Vision Res 2001; 41: 2173–85.

    Google Scholar 

  8. Cringle SJ, Alder VA, Brown MJ, Yu DY. Effect of scleral recording location on ERG amplitude. Curr Eye Res 1986; 5: 959–65.

    Google Scholar 

  9. Peachey NS, Roveri L, Messing A, McCall MA. Functional consequences of oncogene-induced horizontal cell degeneration in the retinas of transgenic mice. Vis Neurosci 1997; 14: 627–32.

    Google Scholar 

  10. Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS. A naturally-occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 1998; 39: 2443–9.

    Google Scholar 

  11. Ren JC, LaVail MM, Peachey NS. Retinal degeneration in the nervous mutant mouse. III. Electrophysiological studies of the visual pathway. Exp Eye Res 2000; 70: 467–73.

    Google Scholar 

  12. Porciatti V, Pizzorusso T, Maffei L. The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 1999; 39: 3071–81.

    Google Scholar 

  13. Porciatti V, Pizzorusso T, Cenni MC, Maffei L. The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 1996; 93: 14955–9.

    Google Scholar 

  14. Remtulla S, Hallett PE. A schematic eye for the mouse, and comparisons with the rat. Vision Res 1985; 25: 21–31.

    Google Scholar 

  15. Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr. UV-and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 1999; 19: 442–55.

    Google Scholar 

  16. Lyubarsky AL, Chen C, Simon MI, Pugh EN Jr. Mice lacking G-protein receptor kinase 1 have profoundly slowed recovery of cone-driven retinal responses. J Neurosci 2000; 20: 2209–17.

    Google Scholar 

  17. Lyubarsky AL, Naarendorp F, Zhang X, Wensel T, Simon MI, Pugh EN Jr. RGS9-1 is required for normal inactivation of mouse cone phototransduction. Mol Vision 2001; 7: 71–8.

    Google Scholar 

  18. Lyubarsky AL, Lem J, Chen J, Falsini B, Iannaccone A, Pugh EN Jr. Functionally rodless mice: transgenic models for the investigation of cone function in retinal disease and therapy. Vision Res 2002; 42: 401–15.

    Google Scholar 

  19. Xu X, Quiambao AB, Roveri L, Pardue MT, Marx JL, Röhlich P, Peachey NS, Al-Ubaidi MR. Degeneration of cone photoreceptors induced by expression of the Mas1 oncogene. Exp Neurol 2000; 163: 207–19.

    Google Scholar 

  20. Peachey NS, Goto Y, Al-Ubaidi MR, Naash MI. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosci Lett 1993; 162: 9–11.

    Google Scholar 

  21. Humphries MM, Kiang S, McNally N, Donovan MA, Sieving PA, Bush RA, Machida S, Cotter T, Hobson A, Farrar J, Humphries P, Kenna P. Comparative structural and functional analysis of photoreceptor neurons of rho-/-mice reveal increased survival on C57BL/6J in comparison to 129Sv genetic background. Vis Neurosci 2001; 18: 437–43.

    Google Scholar 

  22. Weleber RG. The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci 1981; 20: 392–9.

    Google Scholar 

  23. Birch DG, Anderson JL. Standardized full-field electroretinography: normal values and their variations with age. Arch Ophthalmol 1992; 110: 571–6.

    Google Scholar 

  24. Aleman TS, LaVail MM, Montemayor R, Ying G-S, Maguire MM, Laties AM, Jacobson SG, Cideciyan AV. Augmented rod bipolar cell function in partial receptor loss: an ERG study in P23H rhodopsin transgenic and aging normal rats. Vision Res 2001; 41: 2779–97.

    Google Scholar 

  25. Pugh EN Jr., Falsini B, Lyubarsky AL. The origin of the major rod-and cone-driven components of the rodent electroretinogram, and the effect of age and light-rearing history on the magnitude of these components. In: Williams TP, Thistle AB, eds. Photostasis and Related Phenomena. New York: Plenum Press, 1998: 93–128.

    Google Scholar 

  26. Fliesler SJ, Richards MJ, Peachey NS, Kauser K. Hypercholesterolemia does not alter retinal sterol composition or compromise retinal structure or function in apolipoprotein E (ApoE)-knockout mice. ARVO Abstracts. Invest Ophthalmol Visual Sci 2000; 41: S199.

    Google Scholar 

  27. Li C, Cheng M, Yan H, Peachey NS, Naash MI. Age-related changes in the mouse outer retina. Optom Vision Sci 2001; 78: 425–30.

    Google Scholar 

  28. Cheng T, Peachey NS, Li S, Goto Y, Cao Y, Naash MI. The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 1997; 17: 8118–28.

    Google Scholar 

  29. Robson JG, Frishman LJ. Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 1998–99; 95: 187–215.

    Google Scholar 

  30. Breton ME, Schueller AW, Lamb TD, Pugh EN Jr. Analysis of ERG a-wave amplification and kinetics in terms of the Gprotein cascade of phototransduction. Invest Ophthalmol Vis Sci 1994; 35: 295–309.

    Google Scholar 

  31. Hood DC, Birch DG. Rod phototransduction in retinitis pigmentosa: estimation and interpretation of parameters derived from the rod a-wave. Invest Ophthalmol Vis Sci 1994; 35: 2948–61.

    Google Scholar 

  32. Goto Y, Peachey NS, Ziroli NE, Seiple WH, Gryczan C, Pepperberg DR, Naash MI. Rod phototransduction in transgenic mice expressing a mutant opsin gene. J Opt Soc Am A 1996; 13: 577–85.

    Google Scholar 

  33. Hetling JR, Pepperberg DR. Sensitivity and kinetics of mouse rod flash responses determined in vivo from paired-flash electroretinograms. J Physiol 1999; 516: 593–609.

    Google Scholar 

  34. Weng J, Mata NL, Azarian SM, Tzekov RT, Birch DG, Travis GH. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 1999; 98: 13–23.

    Google Scholar 

  35. Ruether K, Grosse J, Matthiessen E, Hoffmann K, Hartmann C. Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. Invest Ophthalmol Vis Sci 2000; 41: 4039–47.

    Google Scholar 

  36. Robson JG, Frishman LJ. Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 1995; 12: 837–50.

    Google Scholar 

  37. Hood DC, Birch DG. Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. J Opt Soc Am A 1996; 13: 623–33.

    Google Scholar 

  38. Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 1998; 17: 485–521.

    Google Scholar 

  39. Nusinowitz S, Ridder WH 3rd, Heckenlively JR. Rod multifocal electroretinograms in mice. Invest Ophthalmol Vis Sci 1999; 40: 2848–58.

    Google Scholar 

  40. Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, Fukuda Y, Sasaki H, Hiroi K, Nakamura Y, Shigemoto R. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 1995; 80: 757–65.

    Google Scholar 

  41. Kobayashi A, Higashide T, Hamasaki D, Kubota S, Sakuma H, An W, Fujimaki T, McLaren MJ, Weleber RG, Inana G. HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 2000; 41: 3268–77.

    Google Scholar 

  42. Steinberg RH, Linsenmeier RA, Griff ER. Three lightevoked responses of the retinal pigment epithelium. Vision Res 1983; 23: 1315–23.

    Google Scholar 

  43. Peachey NS, Stanton JB, Marmorstein AD. Noninvasive recording and response characteristics of the rat dcelectroretinogram. Vis Neurosci 2002; 19: 693–701.

    Google Scholar 

  44. Wu J, Marmorstein AD, Peachey NS. Stimulus-response characteristics of the mouse dc-ERG. ARVO Abstracts. Invest Ophthalmol Vis Sci 2003; abstract #1899.

  45. Humphries MM, Rancourt D, Farrar GJ, Kenna P, Hazel M, Bush RA, Sieving PA, Sheils DM, McNally N, Creighton P, Erven A, Boros A, Gulya K, Capecchi MR, Humphries P. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature Genet 1997; 15: 216–9.

    Google Scholar 

  46. Toda K, Bush RA, Humphries P, Sieving PA. The electroretinogram of the rhodopsin knockout mouse. Vis Neurosci 1999; 16: 391–8.

    Google Scholar 

  47. Saszik SM, Robson JG, Frishman LJ. The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 2002; 543: 899–916.

    Google Scholar 

  48. Frishman LJ, Sieving PA. Evidence for two sites of adaptation affecting the dark-adapted ERG of cats and primates. Vision Res 1995; 35: 435–42.

    Google Scholar 

  49. Miyake Y, Horiguchi M, Terasaki H, Kondo M. Scotopic threshold response in complete and incomplete types of congenital stationary night blindness. Invest Ophthalmol Vis Sci 1994; 35: 3770–5.

    Google Scholar 

  50. Bush RA, Sieving PA. A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 1994; 35: 635–45.

    Google Scholar 

  51. Jacobs GH, Neitz J, Deegan JF 2nd. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 1991; 353: 655–6.

    Google Scholar 

  52. Baylor DA, Nunn BJ, Schnapf JL. Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol 1987; 390: 145–60.

    Google Scholar 

  53. Schnapf JL, Kraft TW, Baylor DA. Spectral sensitivity of human cone photoreceptors. Nature 1987; 325: 439–41.

    Google Scholar 

  54. Applebury ML, Antoch MP, Baxter LC, Chun LL, Falk JD, Farhangfar F, Kage K, Krzystolik MG, Lyass LA, Robbins JT. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 2000; 27: 513–23.

    Google Scholar 

  55. Fishman GA, Birch DG, Holder GE, Brigell MG. Electrophysiologic Testing in Disorders of the Retina, Optic Nerve, and Visual Pathway. 2nd dition. San Francisco, CA: American Academy of Ophthalmology, 2001.

    Google Scholar 

  56. Seiple WH, Siegel IM, Carr RE, Mayron C. Evaluating macular function using the focal ERG. Invest Ophthalmol Vis Sci 1986; 27: 1123–30.

    Google Scholar 

  57. Burns SA, Elsner AE, Kreitz MR. Analysis of nonlinearities in the flicker ERG. Optom Vision Sci 1992; 69: 95–105.

    Google Scholar 

  58. Odom JV, Reits D, Burgers N, Riemslag FCC. Flicker electroretinograms: a systems analytic approach. Optom Vision Sci 1992; 69: 106–16.

    Google Scholar 

  59. Ekesten B, Gouras P, Moschos M. Cone properties of the light-adapted murine ERG. Doc Ophthalmol 1998; 97: 23–31.

    Google Scholar 

  60. Krishna VR, Alexander KR, Peachey NS. Temporal properties of the mouse cone electroretinogram. J Neurophysiol 2002; 87: 42–8.

    Google Scholar 

  61. Adachi-Usami E, Ikeda H, Satoh H. Haloperidol delays visually evoked cortical potentials but not electroretinograms in mice. J Ocular Pharmacol 1990; 6: 203–210.

    Google Scholar 

  62. Strain GM, Tedford BL. Flash and pattern reversal visual evoked potentials in C57BL/6J and B6CBAF1/J mice. Brain Res Bull 1993; 32: 57–63.

    Google Scholar 

  63. Phelan JK, Bok D. A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vision 2000; 6: 116–24.

    Google Scholar 

  64. Penn RD, Hagins WA. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 1969; 223: 201–5.

    Google Scholar 

  65. Keeler CE. The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci USA 1924; 10: 329–33.

    Google Scholar 

  66. Pittler SJ, Keeler CE, Sidman RL, Baehr W. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci USA 1993; 90: 9616–9.

    Google Scholar 

  67. Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase. Nature 1990; 347: 677–80.

    Google Scholar 

  68. Farber DB. From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. Invest Ophthalmol Vis Sci 1995; 36: 263–75.

    Google Scholar 

  69. Low JC. The corneal ERG of the heterozygous retinal degeneration mouse. Graefes Arch Clin Exp Ophthalmol 1987; 225: 413–7.

    Google Scholar 

  70. Frasson M, Sahel JA, Fabre M, Simonutti M, Dreyfus H, Picaud S. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 1999; 5: 1183–7.

    Google Scholar 

  71. Sanyal S, Jansen HG. Absence of receptor outer segments in the retina of rds mutant mice. Neursoci Lett 1981; 21: 23–6.

    Google Scholar 

  72. Reuter JH, Sanyal S. Development and degeneration of retina in rds mutant mice: the electroretinogram. Neurosci Lett 1984; 48: 231–7.

    Google Scholar 

  73. Travis GH, Brennan MB, Danielson PE, Kozak CA, Sutcliffe JG. Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds). Nature 1989; 338: 70–3.

    Google Scholar 

  74. Connell G, Bascom R, Molday L, Reid D, McInnes RR, Molday RS. Photoreceptor peripherin is the normal product of the gene responsible for retinal degeneration in the rds mouse. Proc Natl Acad Sci USA 1991; 88: 723–6.

    Google Scholar 

  75. Molday RM. Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 1998; 39: 2491–513.

    Google Scholar 

  76. Hawkins RK, Jansen HG, Sanyal S. Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 1985; 41: 701–20.

    Google Scholar 

  77. Heckenlively JR, Winston JV, Roderick TH. Screening for mouse retinal degenerations. I. Correlation of indirect ophthalmoscopy, electroretinograms, and histology. Doc Ophthalmol 1989; 71: 229–39.

    Google Scholar 

  78. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR. Retinal degeneration mutants in the mouse. Vision Res 2002; 42: 517–25.

    Google Scholar 

  79. Chang B, Heckenlively JR, Hawes NL, Roderick TH. New mouse primary retinal degeneration (rd-3). Genomics 1993; 16: 45–9.

    Google Scholar 

  80. Danciger JS, Danciger M, Nusinowitz S, Rickabaugh T, Farber DB. Genetic and physical maps of the mouse rd3 locus; exclusion of the ortholog of USH2A. Mamm Genome 1999; 10: 657–61.

    Google Scholar 

  81. Roderick TH, Chang B, Hawes NL, Heckenlively JR. A new dominant retinal degeneration (Rd4) associated with a chromosomal inversion in the mouse. Genomics 1997; 42: 393–6.

    Google Scholar 

  82. Heckenlively JR, Chang B, Erway LC, Peng C, Hawes NL, Hageman GS, Roderick TH. Mouse model for Usher syndrome: linkage mapping suggests homology to Usher type I reported at human chromosome 11p15. Proc Natl Acad Sci USA 1995; 92: 11100–4.

    Google Scholar 

  83. Ohlemiller KK, Hughes RM, Mosinger-Olilvie J, Speck JD, Grosof DH, Silverman MS. Cochlear and retinal degeneration in the tubby mouse. NeuroReport 1995; 6, 845–9.

    Google Scholar 

  84. Ohlemiller KK, Hughes RM, Lett JM, Ogilvie JM, Speck JD, Wright JS, Faddis BT. Progression of cochlear and retinal degeneration in the tubby (rd5) mouse. Audiol Neurootol 1997; 2: 175–85.

    Google Scholar 

  85. Noben-Trauth K, Naggert JK, North MA, Nishina PM. A candidate gene for the mouse mutation tubby. Nature 1996; 380: 534–8.

    Google Scholar 

  86. North MA, Naggert JK, Yan Y, Noben-Trauth K, Nishina PM. Molecular characterization of TUB, TULP1, and TULP2, members of the novel tubby gene family and their possible relation to ocular diseases. Proc Natl Acad Sci USA 1997; 94: 3128–33.

    Google Scholar 

  87. Hawes NL, Chang B, Hageman GS, Nusinowitz S, Nishina PM, Schneider BS, Smith RS, Roderick TH, Davisson MT, Heckenlively JR. Retinal degeneration 6 (rd6): a new mouse model for human retinitis punctata albescens. Invest Ophthalmol Vis Sci 2000; 41: 3149–57.

    Google Scholar 

  88. Akhmedov NB, Piriev NI, Chang B, Rapoport AL, Hawes NL, Nishina PM, Nusinowitz S, Heckenlively JR, Roderick TH, Kozak CA, Danciger M, Davisson MT, Farber DB. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc Natl Acad Sci USA 2000; 97: 5551–6.

    Google Scholar 

  89. Haider NB, Naggert J, Nishina PM. Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice. Hum Mol Genet 2001; 10: 1619–26.

    Google Scholar 

  90. Marmor MF, Jacobson SG, Foerster MH, Kellner U, Weleber RG. Diagnostic clinical findings of a new syndrome with night blindness, maculopathy, and enhanced S cone sensitivity. Am J Ophthalmol 1990; 110: 124–34.

    Google Scholar 

  91. Hood DC, Cideciyan AV, Roman AJ, Jacobson SG. Enhanced S cone syndrome: evidence for an abnormally large number of S cones. Vision Res 1995; 35: 1473–81.

    Google Scholar 

  92. Haider NB, Jacobson SG, Cideciyan AV, Swiderski R, Streb LM, Searby C, Beck G, Hockey R, Hanna DB, Gorman S, Duhl D, Carmi R, Bennett J, Weleber RG, Fishman GA, Wright AF, Stone EM, Sheffield VC. Mutation of a nuclear receptor gene, NR2E3, causes enhanced S cone syndrome, a disorder of retinal cell fate. Nat Genet 2000; 24: 127–31.

    Google Scholar 

  93. Nir I, Ransom N, Smith SB. Ultrastructural features of retinal dystrophy in mutant vitiligo mice. Exp Eye Res 1995; 61: 363–77.

    Google Scholar 

  94. Smith SB, Hamasaki DI. Electroretinographic study of the C57BL/6-mivit /mivit mouse model of retinal degeneration. Invest Ophthalmol Vis Sci 1994; 35: 3119–23.

    Google Scholar 

  95. Tang T, Pawlyk BS, Kosaras B, Berson EL, Sidman RL. ERG abnormalities in relation to histopathologic findings in vitiligo mutant mice. Exp Eye Res 1997; 65: 215–22.

    Google Scholar 

  96. Sheldon WG, Warbritton AR, Bucci TJ, Turturro A. Glaucoma in food-restricted and ad libitium-fed DBA/2Nnia mice. Lab Animal Sci 1995; 10: 508–518.

    Google Scholar 

  97. John SWM, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, Davisson M, Roderick TH, Heckenlively JR. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 1998; 39: 951–62.

    Google Scholar 

  98. Bayer AU, Neuhardt T, May AC, Martus P, Maag K-P, Brodie S, Lutjen-Drecoll E, Podos SM, Mittag T. Retinal morphology and ERG response in the DBA/2Nnia mouse model of glaucoma. Invest Ophthalmol Vis Sci 2001; 42: 1258–65.

    Google Scholar 

  99. Holopigian K, Seiple W, Mayron C, Koty R, Lorenzo M. Electrophysiological and psychophysical flicker sensitivity in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 1990; 31: 1863–8.

    Google Scholar 

  100. Mehaffey L, Holopigian K, Seiple W. Electro-oculogram changes in patients with ocular hypertension and primary open-angle glaucoma. Doc Ophthalmol 1993; 83: 103–10.

    Google Scholar 

  101. Sidman RL, Green MC. ‘Nervous’ a new mutant mouse with cerebellar disease. In Sabourdy M, ed. Les Lutnats Pathologiques chez l"Animal. Paris: Editions du Centre Nationale de la Recherche Scientifique, 69–76.

  102. Berrebi AS, Mugnaini E. Effects of the murine mutation "nervous" on neurons in cerebellum and dorsal cochlear nucleus. J Neurocytol. 1988; 17: 465–84.

    Google Scholar 

  103. Mullen RJ, LaVail M. Two types of retinal degeneration in cerebellar mutant mice. Nature 1975; 258: 528–30.

    Google Scholar 

  104. LaVail MM, White MP, Gorrin GM, Yasumura D, Porrello KV, Mullen RJ. Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix. J Comp Neurol 1993; 333: 168–81.

    Google Scholar 

  105. Ren JC, Stubbs EB Jr., Matthes MT, Yasumura D, Naash MI, LaVail MM, Peachey NS. Retinal degeneration in the nervous mutant mouse. IV. Inner retinal changes. Exp Eye Res 2001; 72: 243–52.

    Google Scholar 

  106. De Jager PL, Harvey D, Polydorides AD, Zuo J, Heintz N. A high-resolution genetic map of the nervous locus on mouse chromosome 8. Genomics 1998; 48: 346–53.

    Google Scholar 

  107. Blanks JC, Mullen RJ, LaVail MM. Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J Comp Neurol 1982; 212: 231–46.

    Google Scholar 

  108. LaVail MM, Blanks JC, Mullen RJ. Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradiographic analysis. J Comp Neurol 1982; 212: 217–30.

    Google Scholar 

  109. Fulton AB, Manning KA, Baker BN, Schukar SE, Bailey CJ. Dark-adapted sensitivity, rhodopsin content, and background adaptation in pcd/pcd mice. Invest Ophthalmol Vis Sci 1982; 22: 386–93.

    Google Scholar 

  110. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 2002; 295: 1904–1906.

    Google Scholar 

  111. Messer A, Plummer J, Wong V, LaVail MM. Retinal degeneration in motor neuron degeneration (mnd) mutant mice. Exp Eye Res 1993; 57: 637–641.

    Google Scholar 

  112. Messer A, Manley K, Plummer JA. An early-onset congenic strain of the motor neuron degeneration (mnd) mouse. Mol Genet Metab 1999; 66: 393–7.

    Google Scholar 

  113. Chang B, Bronson RT, Hawes NL, Roderick TH, Peng C, Hageman GS, Heckenlively JR. Retinal degeneration in motor neuron degeneration: a mouse model of ceroid lipofuscinosis. Invest Ophthalmol Vis Sci 1994; 35: 1071–6.

    Google Scholar 

  114. Horvath DH, Watson JB, Travis GH. Probable exclusion of the cortexin-encoding gene as a candidate for mouse neurological mutants: nervous, tottering and motor neuron degeneration. Gene 1996; 171: 305–6.

    Google Scholar 

  115. Ranta S, Zhang Y, Ross B, Lonka L, Takkunen E, Messer A, Sharp J, Wheeler R, Kusumi K, Mole S, Liu W, Soares MB, Bonaldo MF, Hirvasniemi A, de la Chapelle A, Gilliam TC, Lehesjoki AE. The neuronal ceroid lipofusinoses in human EPMR and mnd mutant mice are associated with mutations in CLN8. Nature Genet 1999; 23: 233–6.

    Google Scholar 

  116. Green SL, Tolwani RJ. Animal models for motor neuron disease. Lab Anim Sci 1999; 49: 480–7.

    Google Scholar 

  117. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, Kelley PM, Kimberling WJ, Wagenaar M, Levi-Acobas F, Larget-Piet D, Munnich A, Steel KP, Brown SDM, Petit C. Defective myosin VIIa gene responsible for Usher syndrome type 1B. Nature 1995; 374; 60–1.

    Google Scholar 

  118. Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel BP, Brown SDM. A type VII myosin encoded by mouse deafness gene shaker-1. Nature 1995; 374: 62–4.

    Google Scholar 

  119. Libby RT, Steel KP. Electroretinographic anomalies in mice with mutations in Myo7a, the gene involved in human Usher syndrome type 1B. Invest Ophthalmol Vis Sci 2001; 42: 770–8.

    Google Scholar 

  120. Liu X-Z, Walsh J, Mburu P, Kendrick-Jones J, Cope MJTV, Steel KP, Brown SDM. Mutations in the myosin VIIa gene cause non-syndromic recessive deafness. Nat Genet 1997; 16: 188–90.

    Google Scholar 

  121. Liu X-Z, Walsh J, Tamagawa Y, Kitamura K, Nishizawa M, Steel KP, Brown SDM. Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIa gene. Nat Genet 1997; 17: 268–9.

    Google Scholar 

  122. Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, Ayadi H, Petit C. The autosomal recessive idsolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIa gene. Nat Genet 1997; 16: 191–3.

    Google Scholar 

  123. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER. Mutations in the protocadherin gene PCFH15 cause Usher syndrome type 1F. Am J Hum Genet 2001; 69: 25–34.

    Google Scholar 

  124. Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR, Lowry RB, Knaus R, Van Laer L, Bernier FP, Schwartz S, Lee C, Morton CC, Mullins RF, Ramesh A, Van Camp G, Hageman GS, Woychik RP, Smith RJ, Hageman GS. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 2001; 10: 1709–18.

    Google Scholar 

  125. Alagramam KN, Zahorsky-Reeves J, Wright CG, Pawlowski KS, Erway LC, Stubbs L, Woychik RP. Neuroepithelial defects of the inner ear in a new allele of the mouse mutation Ames waltzer. Hear Res 2000; 148: 181–91.

    Google Scholar 

  126. Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP. The mouse Ames Waltzer hearingloss mutant is caused by mutation of Pcdh15, a new protocadherin gene. Nat Genet 2001; 27: 99–102.

    Google Scholar 

  127. Ball SL, Bardenstein D, Alagramam K. Assessment of retinal structure and function in Ames Waltzer mice. Invest Ophthalmol Vis Sci 2003; in press.

  128. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 1990; 343: 364–6.

    Google Scholar 

  129. Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, Mukai S, Cowley GS, Berson EL, Dryja TP. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992; 9: 815–30.

    Google Scholar 

  130. Naash MI, Hollyfield JG, Al-Ubaidi MR, Baehr W. Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene. Proc Natl Acad Sci USA 1993; 90: 5499–503.

    Google Scholar 

  131. Peachey NS, Wang M, Naash MI. The VPP mouse: a transgenic model of autosomal dominant retinitis pigmentosa. In: MM LaVail, RE Anderson, JG Hollyfield, eds. Degenerative Retinal Diseases. New York: Plenum Press, 1977: 89–97.

    Google Scholar 

  132. Goto Y, Peachey NS, Ripps H, Naash MI. Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. Invest Ophthalmol Vis Sci 1995; 36: 62–71.

    Google Scholar 

  133. Tan E, Wang Q, Quiambao AB, Xu X, Quitashat N, Peachey NS, Lem J, Fliesler SJ, Pepperberg DR, Naash MI, Al-Ubaidi MR. The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 2001; 42: 589–600.

    Google Scholar 

  134. Lem J, Krasnoperova NV, Calvert PD, Kosaras B, Cameron DA, Nicolo M, Makino CL, Sidman RL. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc Natl Acad Sci USA 1999; 96: 736–41.

    Google Scholar 

  135. Shaaban SA, Crognale MA, Calderone JB, Huang J, Jacobs GH, Deeb SS. Transgenic mice expressing a functional human photopigment. Invest Ophthalmol Vis Sci 1998; 39: 1036–43.

    Google Scholar 

  136. Jacobs GH, Fenwick JC, Calderone JB, Deeb SS. Human cone pigment expressed in transgenic mice yields altered vision. J Neurosci 1999; 19: 3258–65.

    Google Scholar 

  137. Sieving PA, Fowler ML, Bush RA, Machida S, Calvert PD, Green DG, Makino CL, McHenry CL. Constitutive “light” adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J Neurosci 2001; 21: 5449–60.

    Google Scholar 

  138. Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M. Dark-light: model for nightblindness from the human rhodopsin Gly-90→Asp mutation. Proc Natl Acad Sci USA 1995; 92: 880–4.

    Google Scholar 

  139. Rao VR, Cohen GB, Oprian DD. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994; 367: 639–42.

    Google Scholar 

  140. Kobayashi A, Higashide T, Hamasaki D, Kubota S, Sakuma H, An W, Fujimaki T, McLaren MJ, Weleber RG, Inana G. HRG4 (UNC119) mutation found in cone-rod dystrophy causes retinal degeneration in a transgenic model. Invest Ophthalmol Vis Sci 2000; 41: 3268–77.

    Google Scholar 

  141. McCall MA, Gregg RG, Merriman K, Goto Y, Peachey NS, Stanford LR. Morphological and physiological consequences of the selective elimination of rod photoreceptors in transgenic mice. Exp Eye Res 1996; 63: 35–50.

    Google Scholar 

  142. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M. A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 1998; 21: 481–93.

    Google Scholar 

  143. Hammang JP, Baetge EE, Behringer RR, Brinster RL, Palmiter RD, Messing A. Immortalized retinal neurons derived from SV40-T-antigen-induced tumors in transgenic mice. Neuron 1990; 4: 775–82.

    Google Scholar 

  144. Al-Ubaidi MR, Hollyfield JG, Overbeek PA, Baehr W. Photoreceptor degeneration induced by the expression of simian virus 40 large tumor antigen in the retina of transgenic mice. Proc Natl Acad Sci USA 1992; 89: 1194–8.

    Google Scholar 

  145. Quiambao AB, Peachey NS, Mangini NJ, Röhlich P, Holly-field JG, Al-Ubaidi MR. A 221 bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice. Vis Neurosci 1997; 14: 617–25.

    Google Scholar 

  146. Peachey NS, Goto Y, Quiambao A, Al-Ubaidi MR. Functional consequences of oncogene-induced photoreceptor degeneration. Vis Neurosci 1995; 12: 513–22.

    Google Scholar 

  147. Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997; 20: 245–67.

    Google Scholar 

  148. Quiambao AB, Tan E, Chang S, Komori N, Naash MI, Peachey NS, Matsumoto H, Ucker DS, Al-Ubaidi MR. Transgenic bcl-2 expressed in photoreceptor cells confers both death-sparing and death-inducing effects. Exp Eye Res 2001; 73: 711–21.

    Google Scholar 

  149. Keller SA, Jones JM, Boyle A, Barrow LL, Killen PD, Green DG, Kapousta NV, Hitchcock PF, Swank RT, Meisler MH. Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 1994; 23: 309–20.

    Google Scholar 

  150. Green DG, Kapousta-Bruneau NV, Hitchcock PF, Keller SA. Electrophysiology and density of retinal neurons inmice with a mutation that includes the Pax2 locus. Invest Ophthalmol Vis Sci 1997; 38: 919–29.

    Google Scholar 

  151. Ji W, Herron B, Jones JM, Jenkins NA, Gilbert DJ, Copeland NG, Swank R, Flaherty L, Meisler MH. Identification of genes within the Krd deletion on mouse chromosome 19. Mamm Genome 1999; 10: 399–401.

    Google Scholar 

  152. Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicolo M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN Jr, Makino CL, Lem J. Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit. Proc Natl Acad Sci USA 2000; 97: 13913–8.

    Google Scholar 

  153. Wensel TG, Stryer L. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its γ subunit and transducin. Proteins: Struct Funct Genet 1986; 1: 90–9.

    Google Scholar 

  154. Hahn LB, Berson EL, Dryja TP. Evaluation of the gene encoding the γ subunit of rod phosphodiesterase in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1994; 35: 1077–82.

    Google Scholar 

  155. Tsang SH, Gouras P, Yamashita CK, Kjeldbye H, Fisher J, Farber DB, Goff SP. Retinal degeneration in mice lacking the γ subunit of the rod cGMP phosphodiesterase. Science 1996; 272: 1026–9.

    Google Scholar 

  156. Tsang SH, Yamashita CK, Doi K, Salchow DJ, Bouvier N, Mendelsohn M, Gouras P, Farber DB, Goff SP. In vivo studies of the γ subunit of retinal cGMP-phophodiesterase with a substitution of tyrosine-84. Biochem J 2001; 353: 467–74.

    Google Scholar 

  157. Behn D, Potter MJ. Sildenafil-mediated reduction in retinal function in heterozygous mice lacking the γ –subunit of phosphodiesterase. Invest Ophthalmol Vis Sci 2001; 42: 523–7.

    Google Scholar 

  158. Bascom RA, Manara S, Collins L, Molday RS, Kalnins VI, McInnes RR. Cloning of the cDNA for a novel photoreceptor membrane protein (rom-1) identifies a disk rim protein family implicated in human retinopathies. Neuron 1992; 8: 1171–84.

    Google Scholar 

  159. Clarke G, Goldberg AF, Vidgen D, Collins L, Ploder L, Schwarz L, Molday LL, Rossant J, Szel A, Molday RS, Birch DG, McInnes RR. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 2000; 25: 67–73.

    Google Scholar 

  160. Bönigk W, Altenhofen W, Muller F, Dose A, Illing M, Molday RS, Kaupp UB. Rod and cone photoreceptor cells express distinct genes for cGMP-gated channels. Neuron 1993; 10: 865–877.

    Google Scholar 

  161. Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A, Jaissle G, Fauser S, Zrenner E, Hofmann F. Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci USA 1999; 96: 7553–7.

    Google Scholar 

  162. Blaner WS, Olson JA. Retinol and retinoic acid metabolism. In Sporn MB, Roberts AB, Goodman DS, eds. The Retinoids, Biology, Chemistry and Medicine. New York: Raven Press: 1994; 229–56.

    Google Scholar 

  163. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J 1999; 18: 4633–44.

    Google Scholar 

  164. Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 1993; 90: 2375–9.

    Google Scholar 

  165. Bui BV, Armitage JA, Fletcher EL, Richardson SJ, Schreiber G, Vingrys AJ. Retinal anatomy and function of the transthyretin null mouse. Exp Eye Res 2001; 73: 651–9.

    Google Scholar 

  166. Pepperberg DR, Okajima TL, Wiggert B, Ripps H, Crouch RK, Chader GJ. Interphotoreceptor retinoid-binding protein (IRBP). Molecular biology and physiological role in the visual cycle of rhodopsin. Mol Neurobiol. 1993; 7: 61–85.

    Google Scholar 

  167. Liou GI, Fei Y, Peachey NS, Matragoon S, Wei S, Blaner WS, Wang Y, Liu C, Gottesman ME, Ripps H. Early onset photoreceptor abnormalities induced by targeted disruption of the interphotoreceptor retinoid-binding protein gene. J Neurosci 1998; 18: 4511–20.

    Google Scholar 

  168. Ripps H, Peachey NS, Xu X, Nozell SE, Smith SB, Liou GI. The rhodopsin cycle is preserved in IRBP ‘knockout’ mice despite abnormalities in retinal structure and function. Vis Neurosci 2000; 17: 97–105.

    Google Scholar 

  169. Ripps H. The rhodopsin cycle: a twist in the tale. In: Kolb H, Ripps H, Wu S, eds. Progress in Brain Research, Vol. 131. Amsterdam: Elsevier Science: 2001; 335–50.

    Google Scholar 

  170. Saari JC. Biochemistry of visual pigment regeneration. The Friedenwald Lecture. Invest Ophthalmol Vis Sci 2000; 41: 337–48.

    Google Scholar 

  171. Saari JC, Nawrot M, Kennedy BN, Garwin GG, Hurley JB, Huang J, Possin DE, Crabb JW. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 2001; 29: 739–48.

    Google Scholar 

  172. Redmond TM, Yu S, Lee E, Bok D, Hamasaki D, Chen N, Goletz P, Ma JX, Crouch RK, Pfeifer K. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat Genet 1998; 20: 344–51.

    Google Scholar 

  173. Seeliger MW, Grimm C, Stahlberg F, Friedburg C, Jaissle G, Zrenner E, Guo H, Reme CE, Humphries P, Hofmann F, Biel M, Fariss RN, Redmond TM, Wenzel A. New views on RPE65 deficiency: the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat Genet 2001; 29: 70–4.

    Google Scholar 

  174. Ekesten B, Gouras P, Salchow DJ. Ultraviolet and middle wavelength sensitive cone responses in the electroretinogram (ERG) of normal and Rpe65-/-mice. Vision Res 2001; 41: 2425–33.

    Google Scholar 

  175. Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, Ogden T, Van Boemel GB, Wu L, Yang M, Fong HKW. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet 2001; 28: 256–60.

    Google Scholar 

  176. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, Gerrard B, Baird L, Stauffer D, Peiffer A, Rattner A, Smallwood P, Li Y, Anderson KL, Lewis RA, Nathans J, Leppert M, Dean M, Lupski JR. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 1997; 15: 236–46.

    Google Scholar 

  177. Maugeri A, Klevering BJ, Rohrschneider K, Blankenagel A, Brunner HG, Deutman AF, Hoyng CB, Cremers FP. Mutations in the ABCA4 (ABCR) gene are the major cause of autosomal recessive cone-rod dystrophy. Am J Hum Genet 2000; 67: 960–6.

    Google Scholar 

  178. Azarian SM, Travis GH. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). FEBS Lett 1997; 409: 247–52.

    Google Scholar 

  179. Sun H, Nathans J. Stargardt's ABCR is localized to the disc membrane of retinal rod outer segments. Nat Genet 1997; 17: 15–6.

    Google Scholar 

  180. Mata NL, Tzekov RT, Liu X, Weng J, Birch DG, Travis GH. Delayed dark-adaptation and lipofuscin accumulation in abcr+/- mice: implications for involvement of ABCR in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001; 42: 1685–90.

    Google Scholar 

  181. Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 2001; 24: 779–805.

    Google Scholar 

  182. Kennedy MJ, Lee KA, Niemi GA, Craven KB, Garwin GG, Saari JC, Hurley JB. Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Neuron 2001; 31: 87–101.

    Google Scholar 

  183. Chen J, Makino CL, Peachey NS, Baylor DA, Simon MI. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 1995; 267: 374–7.

    Google Scholar 

  184. Xu J, Dodd RL, Makino CL, Simon MI, Baylor DA, Chen J. Prolonged photoresponses in transgenic mouse rods lacking arrestin. Nature 1997; 389: 505–9.

    Google Scholar 

  185. Chen CK, Burns ME, Spencer M, Niemi GA, Chen J, Hurley JB, Baylor DA, Simon MI. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase. Proc Natl Acad Sci USA 1999; 96: 3718–22.

    Google Scholar 

  186. Cideciyan AV, Zhao X, Nielsen L, Khani SC, Jacobson SG, Palczewski K. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Proc Natl Acad Sci USA 1998; 95: 328–33.

    Google Scholar 

  187. Yamamoto S, Sippel KC, Berson EL, Dryja TP. Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 1997; 15: 175–8.

    Google Scholar 

  188. Fuchs S, Nakazawa M, Maw M, Tamai M, Oguchi Y, Gal A. A homozygous 1-base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 1995; 10: 360–2.

    Google Scholar 

  189. Polans A, Baehr W, Palczewski K. Turned on by Ca2+! The physiology and pathology of Ca2+-binding proteins in the retina. Trends Neurosci 1996; 9: 547–54

    Google Scholar 

  190. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL. Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 1999; 19: 5889–97.

    Google Scholar 

  191. Jiang H, Lyubarsky A, Dodd R, Vardi N, Pugh E, Baylor D, Simon MI, Wu D. Phospholipase C β4 is involved in modulating the visual response in mice. Proc Natl Acad Sci USA 1996; 93: 14598–601.

    Google Scholar 

  192. Fadool JM, Linser PJ. 5A11 antigen is a cell recognition molecule which is involved in neuronal-glial interactions in avian neural retina. Dev Dyn 1993; 196: 252–62.

    Google Scholar 

  193. Hori K, Katayama N, Kachi S, Kondo M, Kadomatsu K, Usukura J, Muramatsu T, Mori S, Miyake Y. Retinal dysfunction in basigin deficiency. Invest Ophthalmol Vis Sci 2000; 41: 3128–33.

    Google Scholar 

  194. Ochrietor JD, Moroz TM, Kadomatsu K, Muramatsu T, Linser PJ. Retinal degeneration following failed photoreceptor maturation in 5A11/basigin null mice. Exp Eye Res 2001; 72: 467–77.

    Google Scholar 

  195. Ochrietor JD, Moroz TP, Clamp MF, Timmers AM, Muramatsu T, Linser PJ. Inactivation of the basigin gene impairs normal retinal development and maturation. Vision Res 2002; 42: 447–53.

    Google Scholar 

  196. Hayes KC, Carey RE. Retinal degeneration associated with taurine deficiency in the cat. Science 1975; 199: 949–50.

    Google Scholar 

  197. Lake N. Depletion of taurine in the adult rat retina. Neurochem Res 1982; 7: 1385.

    Google Scholar 

  198. Heller-Stilb B, van Roeyen C, Rascher K, Hartwig H-G, Huth A, Seeliger MW, Warskulat U, Häussinger D. Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 2001; 10.1096/fj.01-0691fje.

  199. Hagstrom SA, North MA, Nishina PL, Berson EL, Dryja TP. Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nat Genet 1998; 18: 174–6.

    Google Scholar 

  200. Hagstrom SA, Duyao M, North MA, Li T. Retinal degeneration in tulp1-/-mice: vesicular accumulation in the interphotoreceptor matrix. Invest Ophthalmol Vis Sci 1999; 40: 2795–802.

    Google Scholar 

  201. Ikeda S, Shiva N, Ikeda A, Smith RS, Nusinowitz S, Yan G, Lin TR, Chu S, Heckenlively JR, North MA, Naggert JK, Nishina PM, Duyao MP. Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum Mol Genet 2000; 9: 155–63.

    Google Scholar 

  202. Hagstrom SA, Adamian M, Scimeca M, Pawlyk BS, Yue G, Li T. A role for the Tubby-like protein 1 in rhodopsin transport. Invest Ophthalmol Vis Sci 2001; 42: 1955–62.

    Google Scholar 

  203. Guillonneau X, Piriev NI, Danciger M, Kozak CA, Cideciyan AV, Jacobson SG, Farber DB. A nonsense mutation in a novel gene is associated with retinitis pigmentosa in a family linked to the RP1 locus. Hum Mol Genet 1999; 8: 1541–6.

    Google Scholar 

  204. Pierce EA, Quinn T, Meehan T, McGee TL, Berson EL, Dryja TP. Mutations in a gene encoding a new oxygenregulated photoreceptor protein cause dominant retinitis pigmentosa. Nat Genet 1999; 22: 248–54.

    Google Scholar 

  205. Sullivan LS, Heckenlively JR, Bowne SJ, Zuo J, Hide WA, Gal A, Denton M, Inglehearn CF, Blanton SH, Daiger SP. Mutations in a novel retina-specific gene cause autosomal dominant retinitis pigmentosa. Nat Genet 1999; 22: 255–9.

    Google Scholar 

  206. Gao J, Cheon K, Nusinowitz S, Liu Q, Bei D, Atkins K, Azimi A, Daiger SP, Farber DB, Heckenlively JR, Pierce EA, Sullivan LS, Zuo J. Progressive photoreceptor degeneration, outer segment dysplasia, and rhodopsin mislocalization in mice with targeted disruption of the retinitis pigmentosa-1 (Rp1) gene. Proc Natl Acad Sci USA 2002; 99: 5698–703.

    Google Scholar 

  207. Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, Carvalho MR, Achatz H, Hellebrand H, Lennon A, Migliaccio C, Porter K, Zrenner E, Bird A, Jay M, Lorenz B, Wittwer B, D"Urso M, Meitinger T, Wright A. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 1996; 13: 35–42.

    Google Scholar 

  208. Roepman R, van Duijnhoven G, Rosenberg T, Pinckers AJ, Bleeker-Wagemakers LM, Bergen AA, Post J, Beck A, Reinhardt R, Ropers HH, Cremers FP, Berger W. Positional cloning of the gene for X-linked retinitis pigmentosa 3: homology with the guanine-nucleotide-exchange factor RCC1. Hum Mol Genet 1996; 5: 1035–41.

    Google Scholar 

  209. Hong D-H, Pawlyk BS, Shang J, Sandberg MA, Berson EL, Li T. A retinitis pigmentosa GRPase regulator (RPGR)-deficient mouse model for X-linked retinitis pigmentosa (RP3). Proc Natl Acad Sci USA 2000; 97: 3649–54.

    Google Scholar 

  210. Bessant DAR, Payne AM, Mitton KP, Wang QL, Swain PK, Plant C, Bird AC, Zack DJ, Swaroop A, Bhattacharya SS. A mutation in NRL is associated with autosomal dominant retinitis pigmentosa. Nat Genet 1999; 21: 355–6.

    Google Scholar 

  211. DeAngelis MM, Grimsby JL, Sandberg MA, Berson EL, Dryja TP. Novel mutations in the NRL gene and associated clinical findings in patients with dominant retinitis pigmentosa. Arch Ophthalmol 2002; 120: 369–75.

    Google Scholar 

  212. Mears AJ, Kondo M, Swain PK, Takada Y, Bush TA, Saunders TL, Sieving PA, Swaroop A. Nrl is required for rod photoreceptor development. Nat Genet 2001; 29: 447–52.

    Google Scholar 

  213. Condon GP, Brownstein S, Wang NS, Kearns JA, Ewing CC. Congenital hereditary (juvenile X-linked) retinoschisis. Histopathologic and ultrastructural findings in three eyes. Arch Ophthalmol 1986; 104: 476–83.

    Google Scholar 

  214. Hirose T, Wolf E, Hara A. Electrophysiological and psychophysical studies in congenital retinoschisis of X-linked recessive inheritance. Doc Ophthalmol Proc Ser 1977; 13: 173–84.

    Google Scholar 

  215. Peachey NS, Fishman GA, Derlacki DJ, Brigell MG. Psychophysical and electroretinographic findings in X-linked juvenile retinoschisis. Arch Ophthalmol 1987; 105: 513–6.

    Google Scholar 

  216. Sauer CG, Gehrig A, Warneke-Wittstock R, Marquardt A, Ewing CC, Gibson A, Lorenz B, Jurklies B, Weber BH. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat Genet 1997; 17: 164–70.

    Google Scholar 

  217. Weber BH, Schrewe H, Molday LL, Gehrig A, White KL, Seeliger MW, Jaissle GB, Friedburg C, Tamm E, Molday RS. Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proc Natl Acad Sci USA 2002; 99: 6222–7.

    Google Scholar 

  218. Rattner A, Smallwood PM, Williams J, Cooke C, Savchenko A, Lyubarsky A, Pugh EN Jr, Nathans J. A photoreceptorspecific cadherin is essential for the structural integrity of the outer segment and for photoreceptor survival. Neuron 2001; 32: 775–86.

    Google Scholar 

  219. Lukasiewicz PD. GABAC receptors in the vertebrate retina. Mol Neurobiol 1996; 12: 181–94.

    Google Scholar 

  220. Qian H, Ripps H. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA ρ and γ 2-subunits. Proc R Soc London B: Biol Sci 1999; 266: 2419–25.

    Google Scholar 

  221. McCall MA, Lukasiewicz PD, Gregg RG, Peachey NS. Elimination of the ρ1 subunit abolishes GABAC receptor expression and alters visual processing in the mouse retina. J Neurosci 2002; 22: 4163–4174.

    Google Scholar 

  222. McCall MA, Lukasiewicz PD, DeMarco PJ, Peachey NS. Elimination of the GABAC receptor alters inner retinal signaling in the cone pathway. ARVO Abstracts. Invest Ophthalmol Vis Sci 2002; abstract #896.

  223. Nguyen-Legros J, Versaux-Botteri C, Vernier P. Dopamine receptor localization in the mammalian retina. Mol Neurobiol 1999; 19: 181–204.

    Google Scholar 

  224. Nir I, Harrison JM, Haque R, Low MJ, Grandy DK, Rubinstein M, Iuvone PM. Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J Neurosci 2002; 22: 2063–73.

    Google Scholar 

  225. 225. Valverde MA. ClC channels: leaving the dark ages on the age of a new millennium. Curr Opin Cell Biol 1999; 11: 509–16.

    Google Scholar 

  226. Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 2001; 29: 185–96.

    Google Scholar 

  227. Newman EA, Odette LL. Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J Neurophysiol 1984; 51: 164–82.

    Google Scholar 

  228. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 2000; 20: 5733–40.

    Google Scholar 

  229. Dryja TP, Hahn LB, Reboul T, Arnaud B. Missense mutation in the gene encoding the α subunit of rod transducin in the Nougaret form of congenital stationary night blindness. Nat Genet 1996; 13: 358–60.

    Google Scholar 

  230. Sandberg MA, Pawlyk BS, Dan J, Arnaud B, Dryja TP, Berson EL. Rod and cone function in the Nougaret form of stationary night blindness. Arch Ophthalmol 1998; 116: 867–72.

    Google Scholar 

  231. Salchow DJ, Gouras P, Doi K, Goff SP, Schwinger E, Tsang SH. A point mutation (W70A) in the rod PDE-γ gene desensitizing and delaying murine rod photoreceptors. Invest Ophthalmol Vis Sci 1999; 40: 3262–7.

    Google Scholar 

  232. Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T. Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 1986; 104: 1013–20.

    Google Scholar 

  233. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, Bergen AA, Prinsen CF, Polomeno RC, Gal A, Drack AV, Musarella MA, Jacobson SG, Young RS, Weleber RG. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 2000; 26: 319–23.

    Google Scholar 

  234. Pusch CM, Zeitz C, Brandau O, Pesch K, Achatz H, Feil S, Scharfe C, Maurer J, Jacobi FK, Pinckers A, Andreasson S, Hardcastle A, Wissinger B, Berger W, Meindl A. The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein. Nat Genet 2000; 26: 324–7.

    Google Scholar 

  235. Bech-Hansen NT, Naylor MJ, Maybaum TA, Pearce WG, Koop B, Fishman GA, Mets M, Musarella MA, Boycott KM. Loss-of-function mutations in a calcium-channel α 1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 264–7.

    Google Scholar 

  236. Strom TM, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber BHF, Wutz K, Gutwillinger N, Ruether K., Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 1998; 19: 260–3.

    Google Scholar 

  237. Pardue MT, Ball SL, Mukhopadhyay S, Candille SI, Mc-Call MA, Gregg RG, Peachey NS. nob: A mouse model of CSNB1. In: Anderson RE, LaVail MM & Hollyfield JG, eds. New Insights Into Retinal Degenerative Diseases. New York: Plenum Press, 2001: 319–28.

    Google Scholar 

  238. Read DS, Ball SL, Pardue MT, Morgans CW, Peachey NS, McCall MA, Gregg RG. Photoreceptor L-type voltagedependent Ca2+ channels are required for formation and/or maintenance of ribbon synapses in the OPL. Invest Ophthalmol Vis Sci 2001; 42: S365.

    Google Scholar 

  239. Candille SI, Pardue MT, McCall MA, Peachey NS, Gregg RG. Localization of the mouse nob (no b-wave) gene to the centromeric region of the X chromosome. Invest Ophthalmol Vis Sci 1999; 40: 2748–51.

    Google Scholar 

  240. Gregg RG, Mukhopadhyay S, Candille S, Ball SL, Pardue MT, McCall MA, Peachey NS. Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci 2003; 44: 378–84.

    Google Scholar 

  241. Nachman-Clewner M, St. Jules R, Townes-Anderson E. Ltype calcium channels in the photoreceptor ribbon synapse: localization and role in plasticity. J Comp Neurol 1999; 415: 1–16.

    Google Scholar 

  242. Letts VA, Pelix R, Biddlecome GH, Arikkath J, Mahaffey CL, Valenzuela A, Bartlett FS, Mori Y, Campbell KP, Frankel WN. The mouse stargazer gene encodes a neuronal Ca2+ channel γ subunit. Nat Genet 1998; 19: 340–7.

    Google Scholar 

  243. Gregg RG, Messing A, Strube C, Beurg M, Moss R, Behan M, Sukhareva M, Haynes S, Powell JA, Coronado R, Powers PA. Absence of the β subunit (cchb1) of the skeletal muscle dihydropyridine receptor alters expression of the α1 subunit and eliminates excitation-contraction coupling. Proc Natl Acad Sci USA 1996; 93: 13961–6.

    Google Scholar 

  244. Ball SL, Powers PA, Shin H-S, Morgans CW, Peachey NS, Gregg RG. Role of the β2 subunit of voltage-dependent calcium channels in synaptic transmission in the retinal outer plexiform layer. Invest Ophthalmol Vis Sci 2002; 43: 1595–603.

    Google Scholar 

  245. Dhingra A, Lyubarsky A, Jiang M, Pugh EN Jr, Birnbaumer L, Sterling P, Vardi N. The light response of ON bipolar neurons requires Gα o. J Neurosci 2000; 20: 9053–8.

    Google Scholar 

  246. Dhingra A, Jiang M, Wang TL, Lyubarsky A, Savchenko A, Bar-Yehuda T, Sterling P, Birnbaumer L, Vardi N. Light response of retinal ON bipolar cells requires a specific splice variant of Gα o. J Neurosci 2002; 22: 4878–84.

    Google Scholar 

  247. Nawy S. The metabotropic receptor mGluR6 may signal through Go, but not phosphodiesterase, in retinal bipolar cells. J Neurosci 1999; 19: 2938–44.

    Google Scholar 

  248. Rohrer B, Korenbrot JI, LaVail MM, Reichardt LF, Xu B. Role of neurotrophin receptor TrkB in the maturation of rod photoreceptors and establishment of synaptic transmission to the inner retina. J Neurosci 1999; 19: 8919–30.

    Google Scholar 

  249. Rohrer B. Gene dosage effect of the TrkB receptor on rod physiology and biochemistry in juvenile mouse retina. Mol Vision 2001; 12: 288–96.

    Google Scholar 

  250. Al-Ubaidi MR, White TW, Ripps H, Poras I, Avner P, Gomes D, Bruzzone D. Functional properties, developmental regulation, and chromosomal localization of murine connexin36, a gap-junctional protein expressed preferentially in retina and brain. J Neurosci Res 2000; 59: 813–26.

    Google Scholar 

  251. Feigenspan A, Teubner B, Willecke K, Weiler R. Expression of neuronal connexin36 in AII amacrine cells of the mammalian retina. J Neurosci 2001; 21: 230–9.

    Google Scholar 

  252. Güldenagel M, Ammermüller J, Feigenspan A, Teubner B, Degen J, Söhl G, Willecke K, Weiler R. Visual transmission deficits in mice with targeted disruption of the gap junction gene connexin36. J Neurosci 2001; 21: 6036–44.

    Google Scholar 

  253. Pillers DM, Weleber RG, Woodward WR, Green DG, Chapman VM, Ray PN. mdxCv3 mouse is a model for electroretinography of Duchenne/Becker muscular dystrophy. Invest Ophthalmol Vis Sci 1995; 36: 462–6.

    Google Scholar 

  254. Pillers DM, Bulman DE, Weleber RG, Sigesmund DA, Musarella MA, Powell BR, Murphey WH, Westall C, Panton C, Becker LE. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nat Genet 1993; 4: 82–6.

    Google Scholar 

  255. Fitzgerald KM, Cibis GW, Giambrone SA, Harris DJ. Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. J Clin Invest 1994; 93: 2425–30.

    Google Scholar 

  256. Cibis GW, Fitzgerald KM, Harris DJ, Rothberg PG, Rupani M. The effects of dystrophin gene mutations on the ERG in mice and humans. Invest Ophthalmol Vis Sci 1993; 34: 3646–52.

    Google Scholar 

  257. Pillers DA, Weleber RG, Green DG, Rash SM, Dally GY, Howard PL, Powers MR, Hood DC, Chapman VM, Ray PN, Woodward WR. Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of duchenne muscular dystrophy mouse mutants. Mol Genet Metab 1999; 66: 100–10.

    Google Scholar 

  258. Pillers DM, Fitzgerald KM, Duncan NM, Rash SM, White RA, Dwinnell SJ, Powell BR, Schnur RE, Ray PN, Cibis GW, Weleber RG. Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations. Hum Genet 1999; 105: 2–9.

    Google Scholar 

  259. Tremblay F, De Becker I, Riddell DC, Dooley JM. Duchenne muscular dystrophy: negative scotopic bright-flash electroretinogram and normal dark adaptation. Can J Ophthalmol 1994; 29: 280–3.

    Google Scholar 

  260. Ball SL, Lindberg FP, Lagenaur CF, Peachey NS. Electroretinograms remain normal in mice lacking a synapse associated protein. Neurosci Lett 2001; 298: 111–4.

    Google Scholar 

  261. Mi ZP, Jiang P, Weng WL, Lindberg FP, Narahanan V, Lagenaur CF. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J Comp Neurol 2000; 416: 335–44.

    Google Scholar 

  262. Spiwoks-Becker I, Vollrath L, Seeliger MW, Jaissle G, Eshkind LG, Leube RE. Synaptic vesicle alterations in rod photoreceptors of synaptophysin-deficient mice. Neuroscience 2001; 107: 127–42.

    Google Scholar 

  263. LaVail MM, Gorrin GM, Yasumura D, Matthes MT. Increased susceptibility to constant light in nr and pcd mice with inherited retinal degenerations. Invest Ophthalmol Vis Sci 1999; 40: 1020–4.

    Google Scholar 

  264. Wang M, Lam TT, Tso MO, Naash MI. Expression of a mutant opsin gene increases the susceptibility of the retina to light damage. Vis Neurosci 1997; 14: 55–62.

    Google Scholar 

  265. Naash MI, Peachey NS, Li ZY, Gryczan CC, Goto Y, Blanks J, Milam AH, Ripps H. Light-induced acceleration of photoreceptor degeneration in transgenic mice expressing mutant rhodopsin. Invest Ophthalmol Vis Sci 1996; 37: 775–82.

    Google Scholar 

  266. Naash MI, Ripps H, Li S, Goto Y, Peachey NS. Polygenic disease and retinitis pigmentosa: albinism exacerbates photoreceptor degeneration induced by the expression of a mutant opsin in transgenic mice. J Neurosci 1996; 16: 7853–8.

    Google Scholar 

  267. Sanyal S, Hawkins RK. Development and degeneration of retina in rds mutant mice: effects of light on the rate of degeneration in albino and pigmented homozygous and heterozygous mutant and normal mice. Vision Res 1986; 26: 1177–85.

    Google Scholar 

  268. Smith SB, Cope BK, McCoy JR. Effects of dark-rearing on the retinal degeneration of the C57BL/6-mivit/mivit mouse. Exp Eye Res 1994; 58: 77–84.

    Google Scholar 

  269. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 1993; 111: 761–72.

    Google Scholar 

  270. Massof RW, Finkelstein D. Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. Arch Ophthalmol 1993; 111: 751–4.

    Google Scholar 

  271. Li T, Sandberg MA, Pawlyk BS, Rosner B, Hayes KC, Dryja TP, Berson EL. Effect of vitamin A supplementation on rhodopsin mutants threonine-17-methionine and proline-347-serine in transgenic mice and in cell cultures. Proc Natl Acad Sci USA 1998; 95: 11933–8.

    Google Scholar 

  272. Van Hooser JP, Aleman TS, He Y-G, Cideciyan AV, Kuksa V, Pittler SJ, Stone EM, Jacobson SG, Palczewski K. Rapid restoration of visual pigment and function with oral retinoid in a mouse model of childhood blindness. Proc Natl Acad Sci USA 2000; 97: 8623–8.

    Google Scholar 

  273. Van Hooser JP, Liang Y, Maeda T, Kuksa V, Jang G-F, He Y-G, Rieke F, Fong HKW, Detwiler PB, Palczewski K. Recovery of visual functions in a mouse model of Leber Congenital Amaurosis. J Biol Chem 2002; 277: 19173–82.

    Google Scholar 

  274. Liang FQ, Aleman TS, Yang Z, Cideciyan AV, Jacobson SG, Bennett J. Melatonin delays photoreceptor degeneration in the rds/rds mouse. NeuroReport 2001; 12: 1011–4.

    Google Scholar 

  275. Lazarus HS, Sly WS, Kyle JW, Hageman GS. Photoreceptor degeneration and altered distribution of interphotoreceptor matrix proteoglycans in the mucopolysaccharidosis VII mouse. Exp Eye Res 1993; 56: 531–41.

    Google Scholar 

  276. Ohlemiller KK, Vogler CA, Roberts M, Galvin N, Sands MS. Retinal function is improved in a murine model of a lysosomal storage disease following bone marrow transplantation. Exp Eye Res 2000; 71: 469–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peachey, N.S., Ball, S.L. Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107, 13–35 (2003). https://doi.org/10.1023/A:1024448314608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024448314608

Navigation