Skip to main content
Log in

Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell line

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997; 22: 299-306.

    Google Scholar 

  2. Slee EA, Adrain C, Martin CJ. Serial killers: Ordering caspase activation events in apoptosis. Cell Death Differ 1999; 6: 1067-1074.

    Google Scholar 

  3. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305-1308.

    Google Scholar 

  4. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998; 281: 1309-1312.

    Google Scholar 

  5. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated cascade: Hierarchical activation of caspases-2,-3,-6,-7,-8 and-10 in a caspase-9 dependent manner. J Cell Biology 1999; 144: 285-291.

    Google Scholar 

  6. Van de Craen M, Declercq W, Van den Brande I, Fiers W, Vandenabeele P. The proteolytic procaspase activation network: An in vitro analysis. Cell Death and Differ 1999; 6: 1117-1124.

    Google Scholar 

  7. Komoriya A, Packard BZ, Brown MJ, Wu M-L, Henkart PA. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable flurogenic caspase substrates. J Exp Med 2000; 191: 1819-1828.

    Google Scholar 

  8. Wyllie AH. Apoptosis: An overview. Br Med Bull 1997; 53: 451-465.

    Google Scholar 

  9. Allsopp TE, McLuckie J, Kerr LE, Macleod M, Sharkey J, Kelly JS. Caspase 6 activity initiates caspase 3 activation in cerebellar granule cell apoptosis. Cell Death and Differ 2000; 7: 984-993.

    Google Scholar 

  10. Xanthoudakis S, Roy S, Rasper D, et al. Hsp60 accelerates the maturation of pro-caspase-3 by upstream activator proteases during apoptosis. EMBO J 1999; 18: 2049-2056.

    Google Scholar 

  11. Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, et al. The Ced-3/interleukin 1beta converting enzyme-like homologue Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. J Biol Chem 1996; 271: 27099-27106.

    Google Scholar 

  12. Rao RV, Castro-Obregon S, Frankowski H, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1 independent intrinsic pathway. J Biol Chem 2002; 277: 21836-21842.

    Google Scholar 

  13. Varghese J, Chattopadhyay S, Sarin A. Inhibition of p38 kinase reveals a Tumour Necrosis Factor alpha (TNF)-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol 2001; 166: 6570-6577.

    Google Scholar 

  14. Vander Heiden MG, Thompson CB. Bcl-2 proteins: Regulators of apoptosis or mitochondrial apoptosis? Nature Cell Biol 1999; 1: E209-E216.

    Google Scholar 

  15. Hu Y, Benedict MA, Ding L, Núñez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1 mediated casapse-9 activation and apoptosis. EMBO J 1999; 18: 3586-3595.

    Google Scholar 

  16. Ueda S, Nakamura H, Masutani H, et al. Redox regulation of caspase-3(-like) protease activity: Regulatory roles of thioredoxin and cytochrome c. J Immunol 1998; 161: 6689-6695.

    Google Scholar 

  17. Seol DW, Billiar TR. A caspase-9 variant missing the catalytic site is an endogenous inhibitor of apoptosis. J Biol Chem 1999; 274: 2072-2076.

    Google Scholar 

  18. Srinivasula SM, Ahmad M, Guo Y, et al. Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res 1999; 59: 999-1002.

    Google Scholar 

  19. Varghese J, Radhika G, Sarin A. The role of calpain in caspase activation during etoposide induced apoptosis in T cells. Eur J Immunol 2001; 31: 2035-2041.

    Google Scholar 

  20. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 18623-18632.

    Google Scholar 

  21. Ronan N, Coffey T, William R, et al. Thiol-mediated apoptosis in prostate carcinoma cells. Cancer 2000; 88: 2092-2104.

    Google Scholar 

  22. Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNAse inactivation. J Biol Chem 1999; 274: 30651-30656.

    Google Scholar 

  23. Fahey RJ, Doseff AI, Wewers MD. Spontaneous human monocyte apoptosis utilises a caspase-3-dependent pathway that is blocked by endotoxin and is independent of caspase-1. J Immunol 1999; 163: 1755-1762.

    Google Scholar 

  24. Kirsch DG, Doseff A, Chau BN, et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 1999; 274: 21155-21161.

    Google Scholar 

  25. Blane C, Deveraus QL, Krajewski S, et al. Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 2000; 60: 4386-4390.

    Google Scholar 

  26. Tartier L, MacCarey YL, Biaglow JE, Kochevar IE, Held KD. Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mtiochondria. Cell Death and Differ 2000; 7: 1002-1010.

    Google Scholar 

  27. Roy S, Bayly CI, Gareau Y, Hotzager VM, et al. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natnl Acad Sci USA 2001; 98: 6132-6137.

    Google Scholar 

  28. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 2000; 150: 887-894.

    Google Scholar 

  29. Varghese J, Sade H, Vandenabeele P, Sarin A. Head involution (Hid) triggered apoptosis requires caspase-8 but not FADD(Fas associated death domain) and is regulated by the extracellular signal-related kianse-I/2 (Erk) in mammalian cells. J Biol Chem 2002; 277: 35097-35104.

    Google Scholar 

  30. Pardot OE, Arcaro A, Salerno G, Raguz S, Downward J, Seckl MJ. Fibroblast growth factor-2 induces translational regulation of Bcl-xL and Bcl-2 via a MEK-dependent pathway. J Biol Chem 2002; 277: 12040-12046.

    Google Scholar 

  31. Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 2000; 79: 355-369.

    Google Scholar 

  32. Scheid MP, Duronio V. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: Involvement of MEK upstream of Bad phosphorylation. Proc Natnl Acad Sci USA 1998; 95: 7439-7444.

    Google Scholar 

  33. Tashker JS, Olsen M, Kornbluth S. Post-cytochrome c protection from apoptosis conferred by a MAPK pathway in Xenopus egg extracts. Mol Biol Cell 2002; 13: 393-401.

    Google Scholar 

  34. Erhardt P, Schremser EJ, Cooper GM. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19: 5308-5315.

    Google Scholar 

  35. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13: 239-252.

    Google Scholar 

  36. Stennicke HR, Ryan CA, Salvesen GS. Reprieval from execution: The molecular basis of caspase inhibition. Trends Biochem Sci 2002; 27: 94-101.

    Google Scholar 

  37. Pae HO, Yoo JC, Choi BM, Lee EJ, Song YS, Chung HT. 12-Otetradecanoyl phorbol 13-acetate, protein kinase C (PKC) activator, protects human leukemia HL-60 cels from taxol-induced apoptosis: Possible role for extracellular signal-regulated kinase. Immunopharmacol Immunotoxicol 2000; 22: 61-73.

    Google Scholar 

  38. Zhuang S, Lynch MC, Kochevar IE. Activation of protein kinase C is required for protection of cells against apoptosis induced by singlet oxygen. FEBS Lett 1998; 437: 158-162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varghese, J., Khandre, N.S. & Sarin, A. Caspase-3 activation is an early event and initiates apoptotic damage in a human leukemia cell line. Apoptosis 8, 363–370 (2003). https://doi.org/10.1023/A:1024121017841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024121017841

Navigation