Skip to main content
Log in

Frontal and Temporal Lobe Sources for a Marker of Controlled Auditory Attention: The Negative Difference (Nd) Event-Related Potential

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Frontal and temporal lobe sources for electrical activity associated with auditory controlled attention (negative difference, Nd) were sought for comparison with those reported to arise from the earlier detection of stimulus-change (mismatch negativity, MMN: Jemel et al. 2002). In two sessions a month apart (T1 and T2), 14 subjects were presented with a 3-tone oddball passively, then as a discrimination task. In EEG recordings (32 sites), Nd was calculated by subtraction of the event-related potential elicited by a non-attended stimulus from that after the same frequency-deviant as target. Putative generators in the 180-228 ms latency-range were modelled with brain electrical source analysis and mapped to the modified Montreal brain-atlas. Initial T1-analyses located bilateral Nd dipoles in the superior temporal gyrus (BA22) and the dorsolateral prefrontal cortex (BA8). Re-test allowed estimates of the temporal and spatial extension of activity. Peak activity occurred 14 ms later. Step-by-step analysis showed that the best spatial fit for the inverse-solutions extended 3-6 mm from the point sources, but for temporal lobe sources this increased 15 mm caudally. The right mid-frontal source (BA10) was rostral and ventral from that in the left superior frontal gyrus (BA8). T1 and T2 dipole strengths were well correlated. Nd measures of controlled attention localised to areas associated with sustained attention, problem-solving and working-memory. Temporal lobe sources were later and more posterior and medial than for automatic change-detection. Frontal Nd sources were more dorsal on the right and more rostral on the left than MMN dipoles reported for the right inferior frontal and left anterior cingulate. The sequence of information processing is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alain, C., Arnott, S.R., Hevenor, S., Graham, S. and Grady, C.L. "What" and "Where" in the human auditory system.Proc. Natl. Acad. Sci. (USA), 2001, 98: 12301-12306.

    PubMed  Google Scholar 

  • Alcaini, M., Giard, M-H., Echallier, J-F. and Pernier, J.F. Selective auditory attention effects in tonotopically organized cortical areas: a topographic ERP study. Hum. Brain Mapp., 1995, 2: 159-169.

    Google Scholar 

  • Alho, K., Woods, D.L. and Algazi, A. Processing of auditory stimuli during auditory and visual attention as revealed by event-related potentials. Psychophysiology, 1994, 31: 469-479.

    PubMed  Google Scholar 

  • Arthur, D.L., Lewis, P.S., Medvick, P.A. and Flynn, E.R. A neuromagnetic study of selective auditory attention. Electroencephalogr. Clin. Neurophysiol., 1991, 78: 348-360.

    PubMed  Google Scholar 

  • Cabeza, R. and Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci., 2000, 12: 1-47.

    Article  Google Scholar 

  • Corbetta, M. and Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci., 2003, 3: 201-215.

    Google Scholar 

  • Coull, J.T., Frith, C.D., Frackowiak, R.S.J. and Grasby, P.M. A fronto-parietal network for rapid visual information processing. A PET study of sustained attention and working memory. Neuropsychologia, 1996, 34: 1085-1095.

    PubMed  Google Scholar 

  • Cowan, N., Winkler, I., Teder, W. and Näätänen, R. Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J. Exp. Psychol. Learn. Mem. Cog. 1993, 19: 909-921.

    Google Scholar 

  • Crottaz-Herbette, S. and Ragot, R. Perception of complex sounds: N1 latency codes pitch, and topography codes spectra. Electroencephalogr. Clin. Neurophysiol., 2000, 111: 1759-1766.

    Google Scholar 

  • Deouell, L.Y., Bentin, S. and Giard, M-H. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators, Psychophysiology, 1998, 35: 355-365.

    Google Scholar 

  • Dien, J., Tucker, D.M., Potts, G. and Hartry-Speiser, A. Localization of auditory evoked potentials related to selective attention, J. Cogn. Neurosci., 1997, 9: 799-823.

    Google Scholar 

  • Dittmann-Balcar, A., Jüptner, M., Jentzen, W. and Schall, U. Dorsolateral prefrontal cortex activation during automatic auditory-duration mismatch processing in humans: a positron emission tomography study. Neurosci. Lett., 2001, 308: 119-122.

    PubMed  Google Scholar 

  • Downar, J., Crawley, A.P., Mikulis, D.J. and Davis, K.D. Acortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol., 2002, 87: 615-620.

    PubMed  Google Scholar 

  • Eimer, M. ERP modulations indicate the selective processing of visual stimuli as a result of transient and sustained spatial attention. Psychophysiology, 1996, 33: 13-21.

    PubMed  Google Scholar 

  • Escera, C., Alho, K., Schröger, E. and Winkler, L. Involuntary attention and distractibility as evaluated with event related potentials.Audiol. Neurootol., 2000a, 5: 151-166.

    PubMed  Google Scholar 

  • Escera, C., Yago, E., Polo, M.D. and Grau, C. The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin. Neurophysiol., 2000b, 111: 546-551.

    PubMed  Google Scholar 

  • Gallinat, J., Mulert, C., Bajbouj, M., Herrmann, W.M., Schunter, J., Senkowski, D., Moukhtieva, R., Kronfeldt, D. and Winterer, G. Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. NeuroImage, 2002, 17: 110-127.

    PubMed  Google Scholar 

  • Gevins, A., Smith, M.E., McEvoy, L.K., Leong, H. and Le, J. Electroencephalographic imaging of higher brain function. Phil. Trans. R. Soc. Lond. B, 1999, 354: 1125-1134.

    Google Scholar 

  • Giard, M-H., Fort, A., Mouchetant-Rostaing, Y. and Pernier, J. Neurophysiological mechanisms of auditory selective attention in humans. Front. Biosci. 2000, 5: 84-94.

    Google Scholar 

  • Gittelman, D.R., Nobre, A.C., Parrish, T.B., LaBar, K.S., Kim, Y-H., Meyer, J.R. and Mesulam, M-M. A large scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioural and cognitive controls. Brain, 1999, 122: 1093-1106.

    PubMed  Google Scholar 

  • Hamäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J. and Lounasmaa, O.V. Magnetoencephalography - theory, instrumentation, and application to non-invasive studies of the working human brain. Rev. Mod. Phys., 1993, 65: 413-498.

    Google Scholar 

  • Hansen, J.C. and Hillyard, S.A. Endogenous brain potentials associated with selective auditory attention. Electroencephalogr. Clin. Neurophysiol., 1980, 49: 277-290.

    PubMed  Google Scholar 

  • Hansen, J.C. and Hillyard, S.A. Attention to multidimensional auditory stimuli. J. Exp. Psychol. Hum. Percept. Perform., 1983, 9: 1-19.

    PubMed  Google Scholar 

  • Hari, R., Hamäläinen, M., Kaukoranta, E., Makela, J.P., Joutsiniemi, S-L. and Tiihonen, J. Selective listening modifies activity of the human auditory cortex. Exp. Brain Res., 1989, 74: 463-470.

    PubMed  Google Scholar 

  • Hasegawa, I., Fukushima, T., Ijhara, T. and Miyashita, Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science, 1998, 281: 814-818.

    PubMed  Google Scholar 

  • Hillyard, S.A. and Picton, T.W. Electrophysiology of cognition. In: F. Plum and V.B. Mountcastle (Eds.), Handbook of Physiology: The Nervous System. American Physiological Society, Bethesda, MD, 1988: 519-583.

    Google Scholar 

  • Jäncke, L., Gaab, N., Wustenberg, T. Scheich, H. and Heinze, H.J. Short-term functional plasticity in th human auditory cortex: an fMRI study. Cog. Brain Res. 2001, 12: 479-485.

    Google Scholar 

  • Jemel, B., Achenbach, C., Wiemer, P., Röpcke, B. and Oades, R.D. Auditory frequency-and duration-deviant detection elicits similar asymmetrical dipole sources localised in both the temporal lobe and in the frontal cortices. NeuroImage, 2001, 13:323.

    Google Scholar 

  • Jemel, B., Achenbach, C., Müller, B.W., Röpcke, B. and Oades, R.D. Mismatch negativity results from bilateral asymmetric dipole sources in the frontal and temporal lobes. Brain Topogr., 2002, 15: 13-27.

    PubMed  Google Scholar 

  • Kamijo, K-I., Yamazaki, T., Kiyuna, T., Takaki, Y. and Kuroiwa, Y. Visual event-related potentials during movement imagery and the dipole analysis. Brain Topogr., 2002, 14: 279-292.

    PubMed  Google Scholar 

  • Karayanidis, F., Andrews, S., Ward, P.B. and Michie, P.T. ERP indices of auditory selective attention in aging and Parkinson's disease. Psychophysiology, 1995, 32: 335-350.

    PubMed  Google Scholar 

  • Kasai, K., Nakagome, K., Itoh, K., Koshida, I., Fukuda, M., Watanabe, A., Kamio, S., Murakami, T., Hata, A., Iwanami, A., Hiramatsu, K-I. and Kato, N. Electrophysiological evidence for sequential activation of multiple brain regions during the auditory selective attention process in humans. NeuroReport, 1999, 10: 3837-3842.

    PubMed  Google Scholar 

  • Kasai, K., Nakagome, K., Iwanami, A. and Fukuda, M. Neuropsychiatry and the auditory selective attention process. Curr. Opin. Psychiatry, 2001, 14: 219-225.

    Google Scholar 

  • Kastner, S. and Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci., 2000, 23: 315-341.

    PubMed  Google Scholar 

  • Kiehl, K.A., Laurens, K.R., Duty, T.L., Forster, B.B. and Liddle, P.F. Neural sources involved in auditory target detection and novelty processing: an event-related fMRI study. Psychophysiology, 2001, 38: 133-142.

    PubMed  Google Scholar 

  • Knight, R.T., Hillyard, S.A., Woods, D.L. and Neville, H.J. The effects of frontal cortex lesions on event-related potentials during auditory selective attention. Electroencephalogr. Clin. Neurophysiol., 1981, 52: 571-582.

    PubMed  Google Scholar 

  • Kounios, J., Smith, R.W., Yang, W., Bachman, P. and D'Esposito, M. Cognitive association formation in human memory revealed by spatiotemporal brain imaging. Neuron, 2001, 29: 297-306.

    PubMed  Google Scholar 

  • Laarne, P.H., Tenhunen-Eskelinen, M.L., Hyttinen, J.K. and Eskola, H.J. Effect ofEEGelectrode density on dipole localization accuracy using two realistically shaped skull resistivity models. Brain Topogr., 2000, 12: 249-254.

    PubMed  Google Scholar 

  • Lahti, A.C., Holcomb, H.H., Medoff, D.R., Weiler, M.A., Tamminga, C.A. and Carpenter, W.T. Abnormal patterns of regional cerebral blood flow in schizophrenia with primary negative symptoms during an effortful auditory recognition task. Am. J. Psychiat., 2001, 158: 1797-1808.

    PubMed  Google Scholar 

  • Lehmann, D. and Skrandies, W. Spatial analysis of evoked potentials in man - a review. Prog. Neurobiol., 1984, 23: 227-250.

    PubMed  Google Scholar 

  • Luks, T.L., Simpson, G.V., Feiwell, R.J. and Miller, W.L. Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. NeuroImage, 2002, 17: 792-802.

    PubMed  Google Scholar 

  • Martinez, A., Di Russo, F., Anllo-Vento, L. and Hillyard, S.A. Electrophysiological analysis of cortical mechanisms of selective attention to high and low spatial frequencies. Clin. Neurophysiol., 2001, 112: 1980-1998.

    PubMed  Google Scholar 

  • Menon, V., Anagnoson, R.T., Mathalon, D.H., Glover, G.H. and Pfefferbaum, A. Functional neuroanatomy of auditory working memory in schizophrenia: relation to positive and negative symptoms. NeuroImage, 2001, 13: 433-446.

    PubMed  Google Scholar 

  • Müller, R-A., Kleinhans N. and Courchesne, E. Broca's area and the discrimination of frequency transitions: a functional MRI study. Brain Lang., 2001, 76: 70-76.

    PubMed  Google Scholar 

  • Näätänen, R. Implications of ERP data for psychological theories of attention. Biol. Psychol., 1988, 26: 117-163.

    PubMed  Google Scholar 

  • Näätänen, R. The role of attention in auditory information processing revealed by event-related potentials and other measures of cognitive function. Behav. Brain Sci, 1990, 13: 201-288.

    Google Scholar 

  • Näätänen, R. and Picton, T.W. N2 and automatic versus controlled processes. Electroencephalogr. Clin. Neurophysiol., 1986, 38: (supplement) 169-186.

    Google Scholar 

  • Nunez P.L. Electric fields of the brain. Oxford University Press, New York, 1981.

    Google Scholar 

  • Nunez, P.L., Silberstein, R.B., Cadusch, P.J., Wijesinghe, R.S., Westdorp, A.F. and Srinivasan, R.A Theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging. Electroencephalogr. Clin. Neurophysiol., 1994, 90: 40-57.

    PubMed  Google Scholar 

  • Oades, R.D., Dittmann-Balcar, A. and Zerbin, D. The topography of 4 subtraction ERP-waveforms derived from a 3-tone auditory oddball task in healthy young adults. Int. J. Neurosci., 1995, 81: 265-281.

    PubMed  Google Scholar 

  • Oades, R.D., Ditmann-Balcar, A., and Zerbin, D. Development and topography of auditory event-related potentials (ERPs): Mismatch and processing negativity in individuals 8-22 years of age. Psychophysiology, 1997, 34: 677-693.

    PubMed  Google Scholar 

  • Oades, R.D., Zerbin, D., Dittmann-Balcar, A. and Eggers, C. Auditory event-related potential (ERP) and difference wave topography in schizophrenic patients with/without active hallucinations and delusions: a comparison with young obsessive-compulsive disorder (OCD) and healthy subjects. Int. J. Psychophysiol. 1996, 22: 185-214.

    PubMed  Google Scholar 

  • Okita, T. Within channel selection and event-related potentials during auditory selective attention. Psychophysiology, 1989, 26: 127-139.

    PubMed  Google Scholar 

  • Ojeda, N., Ortuno, F., Arbizu, J., Lopez, P., Marti-Clement, J.M., Penuelas, I., and Cervera-Enguix, S. Functional anatomy of sustained attention in schizophrenia: contribution of parietal cortices. Hum. Brain Mapp., 2002, 17: 116-130.

    PubMed  Google Scholar 

  • Opitz, B., Rinne, T., Mecklinger, A., von Cramon, D.Y. and Schröger, E. Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. NeuroImage, 2002, 15: 167-174.

    PubMed  Google Scholar 

  • Ortuno, F., Ojeda, N., Arbizu, J., Lopez, P., Marti-Climent, J.M., Penuelas, I. and Cervera, S. Sustained attention in a counting task: normal performance and functional neuroanatomy. NeuroImage, 2002, 17: 411-420.

    PubMed  Google Scholar 

  • Pasqual-Marqui, R.D. and Lehmann, D. Topographic maps, source localization, and the reference electrode: comments on a paper by Desmedt et al. Electroencephalogr. Clin. Neurophysiol., 1993, 88: 530-533.

    PubMed  Google Scholar 

  • Pernier, J., Perrin, F. and Bertrand, O. Scalp current density fields: concept and properties. Electroencephalogr. Clin. Neurophysiol., 1988, 69: 385-389.

    PubMed  Google Scholar 

  • Picton, T.W., Lins, O.G. and Scherg, M. The recording and analysis of event-related potentials. In: F. Boller and J. Grafman (Eds.), Handbook of Neuropsychology, Elsevier, Amsterdam, 1995: 3-73.

    Google Scholar 

  • Rempel-Clower, N.L. and Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb. Cortex, 2000, 10: 851-865.

    PubMed  Google Scholar 

  • Rif, J., Hari, R., Hamäläinen, M.S. and Sams, M. Auditory attention affects two different areas in the human supratemporal cortex. Electroencephalogr. Clin. Neurophysiol. 1991, 79: 464-472.

    PubMed  Google Scholar 

  • Rinne, T., Alho, K., Ilmoniemi, R.J., Virtanen, J. and Näätänen, R. Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage, 2000, 12: 14-19.

    PubMed  Google Scholar 

  • Scherg, M. and Berg, P. Use of a priori knowledge in brain electromagnetic brain activity. Brain Topogr., 1991, 4: 143-150.

    PubMed  Google Scholar 

  • Scherg, M. and Picton, T.W. Separation and identification of event-related brain potential components by brain electric source analysis. Electroencephalogr. Clin. Neurophysiol., 1991, Suppl. 42: 24-37.

    Google Scholar 

  • Sussman, E., Winkler, I., Kreuzer, J., Saher, M., Näätänen, R. and Ritter, W. Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis. Clin. Neurophysiol., 2002, 113: 1909-1920.

    PubMed  Google Scholar 

  • Treisman, A.M. Strategies and models of selective attention. Psychol. Rev., 1969, 76: 282-299.

    PubMed  Google Scholar 

  • van der Stellt, O., van der Molen, M., Gunning, W.B. and Kok, A. Neuroelectric signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Cog. Brain Res., 2001, 12: 245-264.

    Google Scholar 

  • Verleger, R., Heide, W., Butt, C., Wascher, E. and Kömpf, D. On-line brain potential correlates of right parietal patients’ attentional deficit. Electroencephalogr. Clin. Neurophysiol., 1997, 99: 444-457.

    Google Scholar 

  • Viggiano, M.P. Event-related potentials in brain-injured patients with neuropsychological disorders: a review.J. Clin. Exp. Neuropsychol., 1997, 18: 631-647.

    Google Scholar 

  • Waberski, T.D., Kreitschmann-Andermahr, I., Kawohl, W., Farvas, F., Ryang, Y., Gobbele, R. and Buchner, H. Spatio-temporal source imaging reveals subcomponents of the human auditory mismatch negativity in the cingulum and right inferior temporal gyrus. Neurosci. Lett., 2001, 308: 107-110.

    PubMed  Google Scholar 

  • Woods, D.L. The physiologic basis of selective attention: implications of event-related potential studies. In: R. Pasuraman and R. Johnson (Eds), Event-related brain potentials: basic issues and applications, Oxford University Press, N.Y, New York, 1990: 178-209.

    Google Scholar 

  • Woods, D.L. and Alain, C. Conjoining three auditory features: an event-related brain potential study. J. Cogn. Neurosci., 2001, 13: 492-509.

    PubMed  Google Scholar 

  • Woods, D.L. and Knight, R.T. Electrophysiologic evidence of increased distractibility after dorsolateral prefrontal lesions. Neurol., 1986, 36: 212-216.

    Google Scholar 

  • Woods, D.L., Knight, R.T. and Scabini, D. Anatomical substrates of auditory selective attention: behavioral and electrophysiological effects of posterior association cortex lesions. Cogn. Brain Res., 1993, 1: 227-240.

    Google Scholar 

  • Yvert, B., Bertrand, O., Thevenet, M., Echallier, J.F. and Pernier, J. A systematic evaluation of the spherical model accuracy in EEG dipole localization. Electroencephalogr. Clin. Neurophysiol., 1997, 102: 452-459.

    Google Scholar 

  • Zatorre, R.J., Perry, D.W., Beckett, C.A., Westbury, C.F. and Evans, A.C. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc. Natl. Acad. Sci. (USA), 1998, 95: 3172-3177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jemel, B., Oades, R.D., Oknina, L. et al. Frontal and Temporal Lobe Sources for a Marker of Controlled Auditory Attention: The Negative Difference (Nd) Event-Related Potential. Brain Topogr 15, 249–262 (2003). https://doi.org/10.1023/A:1023915730566

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023915730566

Navigation