Skip to main content
Log in

Attractiveness of Fruit and Flower Odorants Detected by Olfactory Receptor Neurons in the Fruit Chafer Pachnoda marginata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We studied the attraction of the African fruit chafer Pachnoda marginata Drury (Coleoptera: Scarabaeidae) to banana and 34 synthetic plant compounds previously shown to be detected by P. marginata olfactory receptor neurons. The behavioral studies were carried out in a two-choice olfactometer, where the attraction of beetles to lures and controls was monitored in 30-min intervals during whole days. Monitoring of the attraction over time gave additional information when comparing relative attractiveness of different compounds. Seventeen of the test compounds, primarily phenylic compounds, fruit esters, isovaleric acid, acetoin, and some floral or fruit terpenes, were attractive to P. marginata. Compounds showing no attractiveness included green leaf volatiles, lactones, and several alcohols, but also phenylic compounds and esters. One case of blend synergism was demonstrated, as well as some examples of sexual dimorphism in attraction. The significance of certain compounds and receptor neurons for olfactory-guided behavior of phytophagous scarabs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arredondo-Bernal, H. C., Cibrián-Tovar, J., and Williams, R. N. 1995. Responses of Macrodactylus spp. (Coleoptera: Scarabaeidae) and other insects to food attractants in Tlaxcala and Jalisco, Mexico. Fl. Entomol. 78:56–61.

    Google Scholar 

  • Barata, E. N., Mustaparta, H., Pickett, J. A., Wadhams, L. J., and Araujo, J. 2002. Encoding of host and non-host plant odors by receptor neurones in the eucalyptus woodborer, Phoracantha semipunctata (Coleoptera: Cerambycidae). J. Comp. Physiol. A 188:121–133.

    Google Scholar 

  • Ben-Yakir, D., Bazar, A., and Chen, M. 1995. Attraction of Maladera matrida (Coleoptera: Scarabaeidae) to eugenol and other lures. J. Econ. Entomol. 88:415–420.

    Google Scholar 

  • Blight, M. M., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1995. Antennal perception of oilseed rape, Brassica napus (Brassicaceae) volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera: Curculionidae). J. Chem. Ecol. 21:1649–1664.

    Google Scholar 

  • Byers, J. A. 1995. Host tree chemistry affecting colonization in bark beetles, pp. 154-213, in R. T. Cardé and W. J. Bell (Eds.). Chemical Ecology of Insects 2. Chapman and Hall, New York.

    Google Scholar 

  • de Bruyne, M., Clyne, P. J., and Carlson, J. R. 1999. Odor coding in a model olfactory organ: The Drosophila maxillary palp. J. Neurosci. 19:4520–4532.

    Google Scholar 

  • de Bruyne, M., Foster, K., and Carlson, J. R. 2001. Odor coding in the Drosophila antenna. Neuron 30:537–552.

    Google Scholar 

  • Domek, J. M. and Johnson, D. T. 1988. Demonstration of semiochemically induced aggregation of the green June beetle, Cotinis nitida (L.) (Coleoptera: Scarabaeidae). Environ. Entomol. 17:147–149.

    Google Scholar 

  • Donaldson, J. M. I., McGovern, T. P., and Ladd, T. L., Jr. 1986. Trapping techniques and attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J. Econ. Entomol. 79:374–377.

    Google Scholar 

  • Donaldson, J. M. I., McGovern, T. P., and Ladd, T. L., Jr. 1990. Floral attractants for Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J. Econ. Entomol. 83:1298–1305.

    Google Scholar 

  • Fleming, W. E. 1972. Biology of the Japanese beetle. US Dep. Agric. Tech. Bull. 1449.

  • Hansson, B. S., Larsson, M. C., and Leal, W. S. 1999. Green leaf volatile-detecting olfactory receptor neurones display very high sensitivity and specificity in a scarab beetle. Physiol. Entomol. 24:121–126.

    Google Scholar 

  • Harari, A. R., Ben-Yakir, D., and Rosen, D. 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabaeidae). J. Chem. Ecol. 20:361–371.

    Google Scholar 

  • Heath, J. J., Williams, R. N., and Phelan, P. L. 2001. High light intensity: A critical factor in the wind-tunnel flight of two scarabs, the rose chafer and Japanese beetle. J. Chem. Ecol. 27:419–429.

    Google Scholar 

  • Klein, M. G. and Edwards, D. C. 1989. Captures of Popillia lewisi (Coleoptera: Scarabaeidae) and other scarabs on Okinawa with Japanese beetle lures. J. Econ. Entomol. 82:101–103.

    Google Scholar 

  • Knudsen, J. T., Tollsten, L., and Bergström, L. G. 1993. Floral scents—A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280.

    Google Scholar 

  • Ladd, T. L. and McGovern, T. P. 1980. Japanese beetle: A superior attractant, Phenethyl propionate + Eugenol + Geraniol, 3:7:3. J. Econ. Entomol. 73:689–691.

    Google Scholar 

  • Langford, G. S., Muma, M. H., and Cory, E. N. 1943. Attractiveness of certain plant constituents to the Japanese beetle. J. Econ. Entomol. 36:248–252.

    Google Scholar 

  • Larsson, M. C., Leal, W. S., and Hansson, B. S. 2001. Olfactory receptor neurons detecting plant odors and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J. Insect Physiol. 47:1065–1076.

    Google Scholar 

  • Leal, W. S. 1991. (R,Z)-5-(−)-(Oct-1-enyl)oxacyclopentan-2-one, the sex pheromone of the scarab beetle Anomala cuprea. Naturwissenschaften 78:521–523.

    Google Scholar 

  • Leal, W. S. 1998. Chemical ecology of phytophagous scarab beetles. Annu. Rev. Entomol. 43:39–61.

    Google Scholar 

  • Leal, W. S., Ono, M., Hasegawa, M., and Sawada, M. 1994. Kairomone from dandelion, Taraxacum officinale, attractant for scarab beetle Anomala octiescostata. J. Chem. Ecol. 20:1697–1704.

    Google Scholar 

  • Lin, H. and Phelan, P. L. 1991. Identification of food volatiles attractive to dusky sap beetle, Carpophilus lugubris (Coleoptera: Nitidulidae). J. Chem. Ecol. 17:1273–1286.

    Google Scholar 

  • Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese Beetle (Popillia japonica Newman). J. Chem. Ecol. 21:1457–1467.

    Google Scholar 

  • Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1998. Attraction of Japanese beetles (Coleoptera: Scarabaeidae) to host plant volatiles in field trapping experiments. Environ. Entomol. 27:395–400.

    Google Scholar 

  • Loughrin, J. H., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1996a. Volatile compounds from Crabapple (Malus spp.) cultivars differing in susceptibility to the Japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 22:1295–1305.

    Google Scholar 

  • Loughrin, J. H., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1996b. Role of feeding-induced plant volatiles in aggregative behavior of the Japanese beetle (Coleoptera: Scarabaeidae). Environ. Entomol. 25:1188–1191.

    Google Scholar 

  • Loughrin, J. G., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1997a. Response of Japanese Beetles (Coleoptera: Scarabaeidae) to leaf volatiles of susceptible and resistant maple species. Environ. Entomol. 26:334–342.

    Google Scholar 

  • Loughrin, J. G., Potter, D. A., Hamilton-Kemp, T. R., and Byers, M. E., 1997b. Diurnal emission of volatile compounds by Japanese beetle-damaged grape leaves. Phytochemistry 45:919–923.

    Google Scholar 

  • Metcalf, R. L. and Metcalf, E. R. 1992. Plant Kairomones in Insect Ecology and Control. Chapman and Hall, New York.

    Google Scholar 

  • Nikonov, A. A., Peng, G., Tsurupa, G., and Leal, W. S. 2002. Unisex pheromone detectors and pheromone-binding proteins in scarab beetles. Chem. Senses 27:495–504.

    Google Scholar 

  • Nout, M. J. R. and Bartelt, R. J. 1998. Attraction of a flying nitidulid (Carpophilus humeralis) to volatiles produced by yeasts grown on sweet corn and a corn-based medium. J. Chem. Ecol. 24:1217–1239.

    Google Scholar 

  • Omura, H., Honda, K., and Hayashi, N. 2000. Identification of feeding attractants in oak sap for adults of two nymphalid butterflies, Kaniska canace and Vanessa indica. Physiol. Entomol. 25:281–287.

    Google Scholar 

  • Peacock, L., Lewis, M., and Powers, S. 2001. Volatile compounds from Salix spp. varieties differing in their susceptibility to three willow beetle species. J. Chem. Ecol. 27:1943–1951.

    Google Scholar 

  • Phelan, P. L. and Lin, H. C. 1991. Chemical characterization of fruit and fungal volatiles attractive to dried-fruit beetle, Carpophilus hemipterus (L.) (Coleoptera: Nitidulidae). J. Chem. Ecol. 17:1253–1272.

    Google Scholar 

  • Potter, D. A. and Held, D. W. 1999. Absence of food-aversion learning by a polyphagous scarab, Popillia japonica, following intoxication by geranium, Pelargonium x hortorum. Entomol. Exp. Appl. 91:83–88.

    Google Scholar 

  • Reinecke, A., Ruther, J., and Hilker, M., 2002a. The scent of food and defence: Green leaf volatiles and toluquinone as sex attractant mediate mate finding in the European cockchafer Melolontha melolontha. Ecol. Lett. 5:257–263.

    Google Scholar 

  • Reinecke, A., Ruther, J., Tolasch, T., Francke, W., and Hilker, M., 2002b. Alcoholism in cockchafers: Orientation of male Melolontha melolontha towards green leaf alcohols. Naturwissenschaften 89:265–269.

    Google Scholar 

  • Renwick, J. A. A. 1989. Chemical ecology of oviposition in phytophagous insects. Experientia 45:223–228.

    Google Scholar 

  • Rigout, J. 1989. The Beetles of the World. Vol. 9: The Cetoniini. Science Nat., Venette.

    Google Scholar 

  • Rochat, D., Nagnan-Le Meillour, P., Esteban-Duran, J. R., Malosse, C., Perthuis, B., Morin, J.-P., and Descoins, C., 2000b. Identification of pheromone synergists in American palm weevil, Rhynchophorus palmarum, and attraction of related Dynamis borassi. J. Chem. Ecol. 26:155–187.

    Google Scholar 

  • Rochat, D., Ramirez-Lucas, P., Malosse, C., Rosa, A., Titus, K., and Morin, J. P., 2000a. Role of solid-phase microextraction in the identification of highly volatile pheromones of two Rhinoceros beetles Scapanes australis and Strategus aloes (Coleoptera: Scarabaeidae, Dynastinae). J. Chromatogr. A 885:433–444.

    Google Scholar 

  • Ruther, J., Reinecke, A., and Hilker, M. 2002. Plant volatiles in the sexual communication of Melolontha hippocastani: Response towards time dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27:76–83.

    Google Scholar 

  • Ruther, J., Reinecke, A., Thiemann, K., Tolasch, T., Francke, W., and Hilker, M. 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25:172–179.

    Google Scholar 

  • Schlyter, F. and Birgersson, G. A. 1999. Forest beetles, pp. 113-148, in J. Hardie and A. K. Minks (Eds.). Pheromones of Non-Lepidopteran Insects Associated with Agricultural Plants. CABI Publishing, Wallingford, United Kingdom.

    Google Scholar 

  • Stensmyr, M. C., Larsson, M. C., Bice, S. B., and Hansson, B. S. 2001. Detection of fruit-and flower-emitted volatiles by olfactory receptor neurons in the polyphagous fruit chafer Pachnoda marginata (Coleoptera: Cetoniinae). J. Comp. Physiol. A 187:509–519.

    Google Scholar 

  • Van der Pers, J. N. C. and Löfstedt, C. 1983. Continuous single sensillum recording as a detection method for moth pheromone components in the effluent of a gas chromatograph. Physiol. Entomol. 8:203–211.

    Google Scholar 

  • Visser, J. H. and Avé, D. A. 1978. General green leaf volatiles in the olfactory orientation of the Colorado beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 24:738–749.

    Google Scholar 

  • Wadhams, L. J., Angst, M. E., and Blight, M. M. 1982. Responses of the olfactory receptors of Scolytus scolytus (F.) (Coleoptera: Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. J. Chem. Ecol. 8:477–492.

    Google Scholar 

  • Wibe, A., Borg-Karlsson, A.-K., Norin, T., and Mustaparta, H. 1997. Identification of plant volatiles activating single receptor neurons in the pine weevil (Hylobius abietis). J. Comp. Physiol. A 180:585–595.

    Google Scholar 

  • Williams, R. N., McGovern, T., Klein, M. G., and Fickle, D. S. 1990. Rose chafer (Coleoptera: Scarabaeidae): Improved attractants for adults. J. Econ. Entomol. 83:111–116.

    Google Scholar 

  • Williams, R. N. and Miller, K. V. 1982. Field assay to determine attractiveness of various aromatic compounds to rose chafer adults. J. Econ. Entomol. 75:196–198.

    Google Scholar 

  • Yokomizo, K. and Nagata, K. 1984. Attractants for scarabaeid beetles. Shokobutsoeki 38:403-406. (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill S. Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, M.C., Stensmyr, M.C., Bice, S.B. et al. Attractiveness of Fruit and Flower Odorants Detected by Olfactory Receptor Neurons in the Fruit Chafer Pachnoda marginata . J Chem Ecol 29, 1253–1268 (2003). https://doi.org/10.1023/A:1023893926038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023893926038

Navigation