Skip to main content
Log in

Ammonia Neurotoxicity: Role of the Mitochondrial Permeability Transition

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with severe liver disease. Although the mechanisms responsible for HE remain elusive, ammonia is generally considered to be involved in its pathogenesis, and astrocytes are thought to be the principal target of ammonia neurotoxicity. Altered bioenergetics and oxidative stress are also thought to play a major role in this disorder. In this paper, we present data invoking the mitochondrial permeability transition (MPT) as a factor in the pathogenesis of HE/hyperammonemia. The MPT is a Ca2+-dependent, cyclosporin A (CsA) sensitive process due to the opening of a pore in the inner mitochondrial membrane that leads to a collapse of ionic gradients and ultimately to mitochondrial dysfunction. Many of the factors that facilitate the induction of the MPT are also known to be implicated in the mechanism of HE, including free radicals, Ca2+, nitric oxide, alkaline pH, and glutamine. We have recently shown that treatment of cultured astrocytes with 5 mM NH4Cl resulted in a dissipation of the mitochondrial membrane potential (ΔΨ m ), which was sensitive to CsA. Similarly treated cultured neurons failed to show a loss of the ΔΨ m . Further support for the ammonia induction of the MPT was obtained by observing an increase in mitochondrial permeability to 2-deoxyglucose-6-phosphate, and a decrease in calcein fluorescence in astrocytes after ammonia treatment, both of which were also blocked by CsA. CsA was likewise capable of exerting a protective effect against hyperammonemia in mice. Taken together, our data suggest that the MPT represents an important component of the pathogenesis of HE and other hyperammonemic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 22: 208-215.

    Google Scholar 

  • Bacci A., Verderio, C., Pravettoni, E., and Matteoli, M. (1999). The role of glial cells in synaptic function. Philos. Trans. R. Soc. Lond. [Biol.] 354: 403-409.

    Google Scholar 

  • Bai, G., Rama Rao, K.V., Murthy, Ch. R.K., Panickar, K.S., Jayakumar, A.R., and Norenberg, M.D. (2001). Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J. Neurosci. Res. 66: 981-991.

    Google Scholar 

  • Beatrice, M.C., Palmer, J.W., and Pfeiffer, D.R. (1980). The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. J. Biol. Chem. 255: 8663-8671.

    Google Scholar 

  • Bernardi, P. (1996). The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim. Biophys. Acta 1275: 5-9.

    Google Scholar 

  • Bernardi, P., Colonna, R., Costantini, P., Eriksson, O., Fontaine, E., Ichas, F., Massari, S., Nicolli, A., Petronilli, V., and Scorrano, L. (1998). The mitochondrial permeability transition. Biofactors 8: 273-281.

    Google Scholar 

  • Bismuth, H., Samuel, D., Castaing, D., Williams, R., and Pereira, S.P. (1996). Liver transplantation in Europe for patients with acute liver failure. Semin. Liver Dis. 16: 415-425.

    Google Scholar 

  • Blei, A.T., Olafsson, S., Therrien, G., and Butterworth, R.F. (1994). Ammonia-induced brain edema and intracranial hypertension in rats after portacaval anastomosis. Hepatology 19: 1437-1444.

    Google Scholar 

  • Bruck, R., Aeed H., Shirin, H., Matas, Z., Zaidel, L., Avni, Y., and Halpern, Z. (1999). The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J. Hepatol. 31: 27-38.

    Google Scholar 

  • Brusilow, S.W., and Traystman, R.J. (1986). Letter to editor. New Engl. J. Med. 314: 786.

    Google Scholar 

  • Butterworth, R.F. (2000). The astrocytic (“peripheral-type”) benzodiazepine receptor: Role in the pathogenesis of portal-systemic encephalopathy. Neurochem. Int. 36: 411-416.

    Google Scholar 

  • Buzanska, L., Zablocka, B., Dybel, A., Domanska-Janik, K., and Albrecht, J. (2000). Delayed induction of apoptosis by ammonia in C6 glioma cells. Neurochem. Int. 37: 287-297.

    Google Scholar 

  • Capocaccia, L., and Angelico, M. (1991). Fulminant hepatic failure: Clinical features, etiology, epidemiology, and current management. Dig. Dis. Sci. 36: 775-779.

    Google Scholar 

  • Clemmesen, J.O., Larsen, F.S., Kondrup, J., Hensen, B.A., and Ott, P. (1999). Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentrations. Hepatology 19: 1437-1444.

    Google Scholar 

  • Conn, H.O. (1993). Hepatic encephalopathy. In (L. Schiff and Schiff E.R., eds.), Diseases of the Liver, Lippincott, Philadelphia, pp. 1036-1061.

    Google Scholar 

  • Conn, H.O., and Lieberthal, M.L. (1978). The Hepatic Coma Syndromes and Lactulose, Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Cooper, A.J.L., and Plum, F. (1987). Biochemistry and physiology of brain ammonia. Physiol. Rev. 67: 440-519.

    Google Scholar 

  • Coyle, J.T., and Puttfarcken, P.S. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689-695.

    Google Scholar 

  • Crompton, M., Costi, A., and Hayat, L. (1987). Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem. J. 245: 915-918.

    Google Scholar 

  • Crompton, M., Virji, S., and Ward, J.M. (1998). Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J. Biochem. 258: 729-735.

    Google Scholar 

  • Drewes, L.R., and Leino, R.L. (1985). Neuron-specific mitochondrial degeneration induced by hyperammonemia and octanoic acidemia. Brain Res. 340: 211-218.

    Google Scholar 

  • Faff-Michalak, L., and Albrecht, J. (1991). Aspartate aminotransferase, malate dehydrogenase and pyruvate dehydrogenase activities in rat cerebral synaptic and nonsynaptic mitochondria: Effects of in vitro treatment with ammonia, hyperammonemia and hepatic encephalopathy. Metab. Brain Dis. 6: 187-197.

    Google Scholar 

  • Felipo, V., Hermenegildo, C., Montoliu, C., Llansola, M., and Miñana M. D. (1998). Neurotoxicity of ammonia and glutamate: Molecular mechanisms and prevention. Neurotoxicology 19: 675-681.

    Google Scholar 

  • Felipo, V., Kosenko, E., Miñana, M.-D., Marcaida, G., and Grisolía, S. (1994). Molecular mechanism of acute ammonia toxicity and of its prevention by L-carnitine. Adv. Exp. Med. Biol. 368: 65-78.

    Google Scholar 

  • Fitzpatrick, S.M., Cooper, A.J., and Hertz, L. (1988). Effects of ammonia and beta-methylene-DL-aspartate on the oxidation of glucose and pyruvate by neurons and astrocytes in primary culture. J. Neurochem. 51: 1197-1203.

    Google Scholar 

  • Gregorios, J.B., Mozes, L.W., Norenberg, L.O.B., and Norenberg, M.D. (1985a). Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44: 397-403.

    Google Scholar 

  • Gregorios, J.B., Mozes, L.W., and Norenberg, M.D. (1985b). Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44: 404-414.

    Google Scholar 

  • Guerrini, V.H. (1994). Effect of antioxidants on ammonia induced CNS-renal pathobiology in sheep. Free Radic. Res. 21: 35-43.

    Google Scholar 

  • Gunter, T.E., Gunter, K.E., Sheu, S.S., and Gavin, C.E. (1999). Mitochondrial calcium transport: Physiological and pathological relevance. Am. J. Physiol. 267: C313-C339.

    Google Scholar 

  • Gunter, T.E., and Pfeiffer, D.R. (1990). Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258: C755-C786.

    Google Scholar 

  • Haghighat, N., and McCandles, D.W. (1997). Effect of ammonium chloride on metabolism of primary astrocytes and C6-glioma. Metab. Brain Dis. 12: 287-289.

    Google Scholar 

  • Haghighat, N., McCandless, D.W., and Geraminegad, P. (2000). Responses in primary astrocytes and C6-glioma cells to ammonium chloride and dibutyryl cyclic-AMP. Neurochem. Res. 25: 277-284.

    Google Scholar 

  • Halliwell, B. (1992). Reactive oxygen species and the central nervous system. J. Neurochem. 59: 1609-1623.

    Google Scholar 

  • Hawkins, R.A., and Jessy, J. (1991). Hyperammonaemia does not impair brain function in the absence of net glutamine synthesis. Biochem. J. 277: 697-703.

    Google Scholar 

  • Hawkins, R.A., Jessy, J., Mans, A.M., and De Joseph, M.R. (1993). Effect of reducing brain glutamine synthesis on metabolic symptoms of hepatic encephalopathy. J. Neurochem. 60: 1000-1006.

    Google Scholar 

  • Hawkins, R.A., and Mans, A.M. (1989). Brain energy metabolism in hepatic encephalopathy. In (R. F. Butterworth and Pomier Layrargues G., eds.), Hepatic Encephalopathy: Pathophysiology and Treatment, Humana Press, Clifton, NJ, pp. 159-176.

    Google Scholar 

  • Hawkins, R.A., Mans, A.M., and Biebuyck, J.F. (1987). Changes in brain metabolism in hepatic encephalopathy. Neurochem. Pathol. 6: 35-66.

    Google Scholar 

  • Haworth, R.A., and Hunter, D.R. (1979). The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+trigger site. Arch. Biochem. Biophys. 195: 460-467.

    Google Scholar 

  • Hazell, A.S., and Butterworth, R.F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc. Soc. Exp. Biol. Med. 222: 99-112.

    Google Scholar 

  • Hazell, A.S., and Norenberg, M.D. (1998). Ammonia and manganese increase arginine uptake in cultured astrocytes. Neurochem. Res. 23: 869-873.

    Google Scholar 

  • Hindfelt, B., Plum, F., and Duffy, T.E. (1977). Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59: 386-396.

    Google Scholar 

  • Hirsch, T., Marchetti, P., Susin, S.A., Dallaporta, B., Zamzami, N., Marzo I., Geuskens, M., and Kroemer, G. (1997). The apoptosis–necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene 15: 1573-1581.

    Google Scholar 

  • Jayakumar, A.R., Panickar, K.S. and Norenberg, M.D. (2002). Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J. Neurochem. 83: 1226-1243.

    Google Scholar 

  • Jones, E.A., and Weissenborn, K. (1997). Nuerology and the liver. J. Neurol. Neurosurg. Psychiatry 63: 279-293.

    Google Scholar 

  • Kerr, P.M., Suleiman, M.S., and Halestrap, A.P. (1999). Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am. J. Physiol. 276: H496-502.

    Google Scholar 

  • Kinnally, K.W., Zorov, D.B., Antonenko, Y.N., Snyder, S.H., McEnery, M.W., and Tedeschi, H. (1993). Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. Proc. Natl. Acad. Sci. U. S. A. 90: 1374-1378.

    Google Scholar 

  • Kosenko, E., Felipo, V., Montoliu, C., Grisolia, S., and Kaminsky, Y. (1996). Effects of acute hyperammonemia in vivo on oxidative metabolism in nonsynaptic rat brain mitochondria. Metab. Brain Dis. 12: 69-82.

    Google Scholar 

  • Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M.-D., Grisolía, S., and Felipo, V. (1995). Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res. 20: 451-456.

    Google Scholar 

  • Kosenko, E., Kaminsky, M., Kaminsky, A., Valencia, M., Lee, L., Hermenegildo, C., and Felipo, V. (1997). Superoxide production and antioxidant enzymes in ammonia intoxication in rats. Free Radic. Res. 27: 637-644.

    Google Scholar 

  • Kosenko, E., Kaminski, Y., Lopata, O., Muravyov, N., and Felipo, V. (1999). Blocking NMDA receptors prevents the oxidative stress induced by acute ammonia intoxication. Free Radic. Biol. Med. 26: 1369-1374.

    Google Scholar 

  • Kosenko, E., Kaminsky, Y., Lopata, O., Muravyov, N., Kaminsky, A., Hermenegildo, C., and Felipo, V. (1998). Nitroarginine, an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonia intoxication. Metab. Brain Dis. 13: 29-41.

    Google Scholar 

  • Kosenko, E., Kaminsky, Y., Stavroskaya, I.G., and Felipo, V. (2000). Alteration of mitochondrial calcium homeostasis by ammonia-induced activation of NMDA receptors in rat brain in vivo. Brain Res. 880: 139-146.

    Google Scholar 

  • Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998). The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60: 619-642.

    Google Scholar 

  • Lai, J.C.K., and Cooper, A.J.L. (1986). Brain α-ketoglutarate dehydrogenase: Kinetic properties, regional distribution and effects of inhibitors. J. Neurochem. 47: 1376-1386.

    Google Scholar 

  • Lambert, J.J., Belelli, D., Hill-Venning, C., and Peters, J.A. (1995). Neurosteroids and GABAA receptor function. Trends Pharmacol. Sci. 16: 295-303.

    Google Scholar 

  • Magistretti, P.J., and Pellerin, L. (1996). Cellular bases of brain energy metabolism and their relevance to functional brain imaging: Evidence for a prominent role of astrocytes. Cereb. Cortex. 6: 50-61.

    Google Scholar 

  • Majewska, M.D. (1992). Neurosteroids: Endogenous bimodal modulators of the GABAA receptor: Mechanism of action and physiological significance. Prog. Neurobiol. 38: 379-395.

    Google Scholar 

  • Martinez, A.J. (1968). Electron microscopy in human hepatic encephalopathy. Acta Neuropathol. (Berl) 11: 82-86.

    Google Scholar 

  • Master, S., Gottstein, J., and Blei, A.T. (1999). Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 30: 876-880.

    Google Scholar 

  • McKenna, M.C., Sonnewald, U., Huang, X.L., Stevenson, J., and Zielke, H.R. (1996). Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J. Neurochem. 66: 386-393.

    Google Scholar 

  • Meister, A., and Anderson, M.E. (1983). Glutathione. Annu. Rev. Biochem. 52: 711-760.

    Google Scholar 

  • Minamikawa, T., Williams, D.A., Bowser, D.N., and Nagley, P. (1999). Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. Exp. Cell Res. 246: 26-37.

    Google Scholar 

  • Mousseau, D.D., and Butterworth, R.F. (1994). Current theories on the pathogenesis of hepatic encephalopathy. Proc. Soc. Exp. Biol. Med. 206: 329-344.

    Google Scholar 

  • Murthy, C.R., and Hertz, L. (1988). Pyruvate decarboxylation in astrocytes and in neurons in primary cultures in the presence and the absence of ammonia. Neurochem. Res. 13: 57-61.

    Google Scholar 

  • Murthy, Ch. R.K, Bender, A.S., Dombro, R.S., Bai, G., and Norenberg, M.D. (2000). Elevation of glutathione levels by ammonium ions in primary cultures of rat astrocytes. Neurochem. Int. 37: 255-268.

    Google Scholar 

  • Murthy, Ch. R.K., Rama Rao, K.V., Bai, G., and Norenberg, M.D. (2001). Ammonia induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66: 282-288.

    Google Scholar 

  • Norenberg, M.D. (1977). A light and electron microscopic study of experimental portal-systemic (ammonia) encephalopathy. Progression and reversal of the disorder. Lab. Invest. 36: 618-627.

    Google Scholar 

  • Norenberg, M.D. (1981). The astrocyte in liver disease. In (S. Fedoroff and Hertz L., eds.), Advances in Cellular Neurobiology, Vol. 2, Academic Press, New York, pp. 303-352.

    Google Scholar 

  • Norenberg, M.D. (1987). The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6: 13-33.

    Google Scholar 

  • Norenberg, M.D. (1995). Hepatic encephalopathy. In (H. Kettenmann and Ransom B. R., eds.), Neuroglia, Oxford, New York, pp. 950-963.

    Google Scholar 

  • Norenberg, M.D. (2001). Astrocytes and ammonia in hepatic encephalopathy. In (J. de Vellis, ed.), Astrocytes in the Aging Brain, Humana Press, Totowa, NJ, pp. 477-496.

    Google Scholar 

  • Norenberg, M.D. (2003). Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology. 37: 243-248.

    Google Scholar 

  • Norenberg, M.D., and Bender, A.S. (1994). Astrocyte swelling in liver failure: Role of glutamine and benzodiazepines. Acta Neurochir. 60(Suppl.): 24-27.

    Google Scholar 

  • Norenberg, M.D., Huo, Z., Neary, J.T., and Roig-Cantesano, A. (1997). The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: Relation to energy metabolism and glutamatergic neurotransmission. Glia 21: 124-133.

    Google Scholar 

  • Norenberg, M.D., Itzhak, Y., and Bender, A.S. (1997). The peripheral benzodiazepine receptor and neurosteroids in hepatic encephalopathy. Adv. Exp. Med. Biol. 420: 95-111.

    Google Scholar 

  • Norenberg, M.D., Rama Rao, K.V., and Jayakumar, A.R. (in press). The mitochondrial permeability transition in ammonia neurotoxicity. In (E. A. Jones, A. F. Meijer, and R. A. Chamuleau, eds.) Hepatic Encephalopathy and Nitrogen Metabolism, Kluwer, Dordtrecht, The Netherlands.

  • Pastorino, J.G., Simbula, G., Yamamoto, K., Glascott, P.A., Jr., Rothman, R.J., and Farber, J.L. (1996). The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J. Biol. Chem. 271: 29792-29798.

    Google Scholar 

  • Petronilli, V., Miotto, G., Canton, M., Brini, M., Colonna, R., Bernardi, P., and Di Lisa, M. (1999). Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys. J. 765: 725-754.

    Google Scholar 

  • Plum, F., and Hindfelt, B. (1976). The neurological complications of liver disease. In (P. J. Vinken and Bruyn G. W., eds.), Handbook of Clinical Neurology, Vol. 27, North-Holland, Amsterdam, pp. 349-377.

  • Qureshi, K., Rao, K.V.R., and Qureshi, I.A. (1998). Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem. Res. 23: 855-861.

    Google Scholar 

  • Raabe, W. (1987). Synaptic transmission in ammonia intoxication. Neurochem. Pathol. 6: 145-166.

    Google Scholar 

  • Raabe, W.A. (1989). Neurophysiology of ammonia intoxication. In (R. F. Butterworth and Pomier Layrargues G., eds.), Hepatic Encephalopathy: Physiology and Treatment, Humana Press, Clifton, NJ, pp. 49-77.

    Google Scholar 

  • Rama Rao, K.V., Bai, G., Jayakumar, A.R., and Norenberg, M.D. (2001). Role of the peripheral benzodiazepine receptor and neurosteroids in the induction of the mitochondrial permeability transition in cultured astrocytes. J. Neurochem. 78(Suppl. 1): 25.

    Google Scholar 

  • Rama Rao, K.V., Jayakumar, A.R., and Norenberg, M.D. (in press). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem. Intl.

  • Rama Rao, K.V., and Norenberg, M.D. (2001). Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab. Brain Dis. 16: 67-78.

    Google Scholar 

  • Rao, K.V., Mawal, Y.R., and Qureshi, I.A. (1997). Progressive decrease of cerebral cytochrome C oxidase activity in sparse-fur mice: Role of acetyl-L-carnitine in restoring the ammonia-induced cerebral energy depletion. Neurosci. Lett. 224: 83-86.

    Google Scholar 

  • Ratnakumari, L., and Murthy, Ch. R.K. (1989). Activities of pyruvate dehydrogenase, enzymes of citric acid cycle and aminotransferases in subcellular fractions of cerebral cortex in normal and hyperammonemic rats. Neurochem. Res. 14: 221-228.

    Google Scholar 

  • Ratnakumari, L., Qureshi, I.A., and Butterworth, R.F. (1992). Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem. Biophys. Res. Commun. 184: 746-751.

    Google Scholar 

  • Rose, C., Kresse, W., and Kettenmann, H. (in press). Acute insult of ammonia leads to calcium-dependent glutamate release from astrocytes. An in vitro imaging study. In (E. A. Jones, A. F. Meijer, and R. A. Chamuleau, eds), Hepatic Encephalopathy and Nitrogen Metabolism, Kluwer, Dordtrecht, The Netherlands.

  • Swain, M.S., Blei, A.T., Butterworth, R.F., and Kraig, R.P. (1991). Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 261: R1491-R1496.

    Google Scholar 

  • Takahashi, H., Koehler, R.C., Brusilow, S.W., and Traystman, R.J. (1991). Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am. J. Physiol. 261: H825-H829.

    Google Scholar 

  • Takahashi, H., Koehler, R.C., Hirata, T., Brusilow, S.W., and Traystman, R.J. (1992). Restoration of cerebrovascular CO2 responsivity by glutamine synthesis inhibition in hyperammonemic rats. Circ. Res. 71: 1220-1230.

    Google Scholar 

  • Traber, P.G., Dal Canto, M.C., Ganger, D., and Blei, A.T. (1987). Electron microscopic evaluation of brain edema in rabbits with galactosamine-induced fulminant hepatic failure: Ultrastructure and integrity of the blood-brain barrier. Hepatology 7: 1272-1277.

    Google Scholar 

  • Willard-Mack, C.L., Koehler, R.C., Hirata, T., Cork, L.C., Takahashi, H., Traystman, R.J., and Brusilow, S.W. (1996). Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 71: 589-599.

    Google Scholar 

  • Zamzami, N., Hirsch, T., Dallaporta, B., Petit, P.X., and Kroemer, G. (1997). Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J. Bioenerg. Biomembr. 29: 185-193.

    Google Scholar 

  • Zieminska, E., Dolinska, M., Lazarewicz, J.W., and Albrecht, J. (2000). Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21: 295-300.

    Google Scholar 

  • Zieve L. (1987). Pathogenesis of hepatic encephalopathy. Metab. Brain Dis. 2: 147-165.

    Google Scholar 

  • Zoratti, M., and Szabo, I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241: 139-176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rama Rao, K.V., Jayakumar, A.R. & Norenberg, M.D. Ammonia Neurotoxicity: Role of the Mitochondrial Permeability Transition. Metab Brain Dis 18, 113–127 (2003). https://doi.org/10.1023/A:1023858902184

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023858902184

Navigation