Skip to main content
Log in

Leptolyngbya strains from Roman hypogea: cytochemical and physico-chemical characterisation of exopolysaccharides

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Two strains of Leptolyngbya isolated from Roman hypogea were studied in order to characterise the ultrastructural features of the sheath and its composition in exopolysaccharides. Cytochemical stains used in light and transmission electron microscopy allowed detection of the presence of carboxylic groups within the sheath, composed by two different layers. The composition in monosaccharides of three fractions (released, hot and cold capsular polysaccharides) extracted from cultures was determined by reverse phase-high performance liquid chromatography, while the behaviour of the fractions at various pH values was studied by using the circular dichroism. The cytochemical and physico-chemical characterisation of exopolysaccharides should help both the conservation of lithic surfaces of artistic interest and the taxonomic identification of Leptolyngbya strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertano P. 1993. Epilithic algal communities in hypogean monuments environment. Giorn. Bot. Ital. 127: 385-392.

    Google Scholar 

  • Albertano P. 1997. Elemental mapping as a tool in the understanding of microorganisms-substrate interactions. J. Comp. Ass. Microsc. 9: 81-84.

    Google Scholar 

  • Albertano P. 1998. Deterioration of Roman hypogea by epilithic cyanobacteria and microalgae. In: Guarino A. (ed.), Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin. Vol. 2. CNR Editions, pp. 89-93.

  • Albertano P., Barsanti L., Passarelli L. and Gualtieri 2000a. A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron. 31: 27-34.

    Google Scholar 

  • Albertano P. and Bellezza S. 2001. Cytochemistry of cyanobacterial exopolymers in biofilms from Roman hypogea. Nova Hedwigia 123: 501-518.

    Google Scholar 

  • Albertano P. and Bruno L. 1995. Photosynthesys, pigments and ultrastructure of an acclimating Leptolyngbya sp.Giorn. Bot. Ital. 129: 1285-1287.

    Google Scholar 

  • Albertano P., Bruno L., Bellezza S. and Paradossi G. 2000b. Polysaccharides as a key step in stone bio-erosion. In: Fassino V. (ed.), Proceedings of 9th International Congress on Deterioration and Conservation of Stone. Vol. 1. Elsevier, The Netherlands, pp. 425-432.

    Google Scholar 

  • Albertano P. and Grilli Caiola M. 1988. Structural and ultrastructural characters of a red biodeteriorating Lyngbya sp. in culture. Arch. Hydrobiol., Algological Studies 50-53: 55-57.

    Google Scholar 

  • Albertano P. and Ková?ik L. 1994. Is the Leptolyngbya genus (cyanophyte) a homogeneous taxon? Arch. Hydrobiol., Algological Studies 75: 37-51.

    Google Scholar 

  • Albertano P., Ková?ik L. and Grilli Caiola M. 1994. Preliminary investigations on epilithic cyanophytes from a Roman Necropolis. Arch. Hydrobiol., Algological Studies 75: 71-74.

    Google Scholar 

  • Albertano P. and Urzì C. 1999. Structural interaction among epilithic cyanobacteria and heterotrophic microorganism in Roman hypogea. Microb. Ecol. 38: 244-252.

    Google Scholar 

  • Anagnostidis K. and Komárek J. 1988. Modern approach to the classification system of cyanophytes. 3 - Oscillatoriales. Arch. Hydrobiol., Algological Studies 50-53: 327-472.

    Google Scholar 

  • Arp G., Thiel V., Reimer A., Michaelis W. and Reitner J. 1999. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sedimentary Geology 126: 159-176.

    Google Scholar 

  • Bertocchi C., Navarini L. and Cesàro A. 1990. Polysaccharides from cyanobacteria. Carbohydr. Polym. 12: 127-153.

    Google Scholar 

  • Bruno L. and Albertano P. 1999. Photoacclimation of sciaphilous epilithic cyanobacteria isolated from Roman hypogea. Arch. Hydrobiol., Algological Studies 94: 89-103.

    Google Scholar 

  • Cesàro A., Liut G., Bertocchi C., Navarini L. and Urbani R. 1990. Physicochemical properties of the exocellular polysaccharide from Cyanospira capsulata. Int. J. biol. Macromol. 12: 79-84.

    Google Scholar 

  • Ciferri O. 1999. Microbial degradation of paintings. Appl. Environ. Microbiol. 65: 879-885.

    Google Scholar 

  • Crayton M.A. 1982. A comparative cytochemical study of volvocacean matrix polysaccharides. J. Phycol. 18: 336-344.

    Google Scholar 

  • Decho A.W. 2000. Microbial biofilms in intertidal system: an overview. Continental Shelf Research 20: 1257-1273.

    Google Scholar 

  • De Caire G.Z., de Cano S.S., de Mulé M.C.Z. and Palma R.M. 2000. Changes in soil enzyme activities following additions of cyanobacterial biomass and exopolysaccharides. Soil Biol. Biochem. 32: 1985-1987.

    Google Scholar 

  • De Caire G.Z., de Cano S.S., de Mulé M.C.Z., Palma R.M. and Colombo K. 1997. Exopolysaccharides of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J. appl. Phycol. 9: 249-253.

    Google Scholar 

  • De Philippis R., Sili C., Paperi R. and Vincenzini M. 2001. Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J. appl. Phycol. 13: 293-299.

    Google Scholar 

  • De Philippis R. and Vincenzini M. 1998. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 22: 151-175.

    Google Scholar 

  • Forni C., Telò F.R. and Grilli Caiola M. 1997. Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia 36: 181- 185.

    Google Scholar 

  • Gloaguen V., Morvan H. and Hoffmann L. 1995. Released and capsular polysaccharides of Oscillatoriaceae (Cyanophyceae, Cyanobacteria). Arch. Hydrobiol., Algological Studies 78: 53- 69.

    Google Scholar 

  • McCracken M.C. and Barcellona W. 1976. Electron histochemistry and ultrastructural localization of carbohydrate-containing substances in the sheath of Volvox. J. Histochem. Cytochem. 24: 663-673.

    Google Scholar 

  • Nicolaus B., Panico A., Lama L., Romano I., Manca M.C., De Giulio A. et al. 1999. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52: 639-647.

    Google Scholar 

  • Paradossi G., Cavalieri F. and Chiessi E. 2002. A conformational study on the algal polysaccharide ulvan. Macromolecules (in press).

  • Paradossi G., Cavalieri F., Pizzoferrato L. and Liquori A.M. 1999. A physico-chemical study on the polysaccharide ulvan from hot water extraction of the macroalga Ulva. Int. J. biol. Macromol. 25: 309-315.

    Google Scholar 

  • Pearse A.G.E. 1985. Part I: Carbohydrates and mucosubstances. In: Pearse A.G.E. (ed.), Histochemistry, Theoretical and Applied. Vol. 2. Churchill Livingstone, London, pp. 675-753.

    Google Scholar 

  • Pentecost A. 1985. Association of cyanobacteria with tufa deposits: identity enumeration and nature of sheath material revealed by histochemistry. Geomicrobiol. J. 4: 285-298.

    Google Scholar 

  • Rippka R., Deruelles J., Waterbury J.B., Herdman M. and Stanier R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. gen. Microbiol. 111: 1-61.

    Google Scholar 

  • Stal L.J. 2000. Cyanobacterial mats and stromatolites. In: Whitton B.A. and Potts M. (eds), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61-120.

    Google Scholar 

  • Thiéry J.P. 1967. Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microsc. 6: 987-1018.

    Google Scholar 

  • Vincenzini M., De Philippis R., Sili C. and Materassi R. 1990. Studies on exopolysaccharide release by diazotrophic batch cultures of Cyanospira capsulata. Appl. Microbiol. Biotechnol. 34: 392-396.

    Google Scholar 

  • Windeger J., Neu T.R. and Flemming H.-C. 1999. What are bacterial extracellular polymeric substances? In: Windeger J., Neu T.R. and Flemming H.-C. (eds), Microbial extracellular polymeric substances - Characterization, structure and function. Springer Verlag, Berlin, pp. 1-19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellezza, S., Paradossi, G., De Philippis, R. et al. Leptolyngbya strains from Roman hypogea: cytochemical and physico-chemical characterisation of exopolysaccharides. Journal of Applied Phycology 15, 193–200 (2003). https://doi.org/10.1023/A:1023811311686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023811311686

Navigation