Skip to main content
Log in

p21-activated kinases in human cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

A balance between proliferation, differentiation, migration and death of cells is critical for the normal development of an organism. Perturbations of this balance can contribute to cancer development. The p21-activated serine/threonine kinases (Paks) play an important role in a variety of cellular functions including cell morphogenesis, motility, survival, angiogenesis, and mitosis. Paks were initially identified as an effector molecules of RHO GTPases; however, recent evidence that they can be activated in both GTPase-dependent and -independent manners expands our understanding of their physiologic functions. Paks play an important role in growth factor signaling, leading to cytoskeletal reorganization that subsequently influences growth factor-mediated cell migration and metastasis functions. Recent findings that Paks play a role in mitosis, nuclear receptor-signaling and deregulation of Pak in cancer cells suggest that these kinases play an important role in both normal development and cancer progression. In this review, we summarize the results of recent advances into the role of Paks in tumorigenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall A: Rho GTPases and the actin cytoskeleton. Science 279: 509–514, 1998

    Google Scholar 

  2. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A: The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70: 401–410, 1992

    Google Scholar 

  3. Lauffenburger DA, Horwitz AF: Cell migration: A physically integrated molecular process. Cell 84: 359–369, 1996

    Google Scholar 

  4. Kozma R, Ahmed S, Best A, Lim L: The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol 16: 5069–5080, 1996

    Google Scholar 

  5. Sells MA, Boyd JT, Chernoff J: p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145: 837–849, 1999

    Google Scholar 

  6. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L: A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46, 1994

    Google Scholar 

  7. Bagrodia S, Cerione RA: Pak to the future. Trends Cell Biol 9: 350–355, 1999

    Google Scholar 

  8. Jaffer ZM, Chernoff J: p21-activated kinases: Three more join the Pak. Int J Biochem Cell Biol 34: 713–717, 2002

    Google Scholar 

  9. Kumar R, Vadlamudi RK: Emerging functions of p21-activated kinases in human cancer cells. J Cell Physiol 193: 133–144, 2002

    Google Scholar 

  10. Adam L, Vadlamudi R, Kondapaka SB, Chernoff J, Mendelsohn J, Kumar R: Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. J Biol Chem 273: 28238–28246, 1998

    Google Scholar 

  11. Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E, Khosravi F, Blagoev B, Mann M: Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 21: 3939–3948, 2002

    Google Scholar 

  12. Dan C, Nath N, Liberto M, Minden A: PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 22: 567–577, 2002

    Google Scholar 

  13. Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V, Belisle B, Minden A: PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 17: 6527–6540, 1998

    Google Scholar 

  14. Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML, Balk SP: AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 16: 85–99, 2002

    Google Scholar 

  15. Royal I, Lamarche V, Lamorte L, Kaibuchi K, Park M: Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 11: 1709–1725, 2000

    Google Scholar 

  16. He H, Levitzki A, Zhu HJ, Walker F, Burgess A, Maruta H: Platelet-derived growth factor requires epidermal growth factor receptor to activate p21-activated kinase family kinases. J Biol Chem 276: 26741–26744, 2001

    Google Scholar 

  17. Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG: Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 271: 25746–25749, 1996

    Google Scholar 

  18. Zhao ZS, Manser E, Loo TH, Lim L: Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20: 6354–6363, 2000

    Google Scholar 

  19. Papakonstanti EA, Stournaras C: Association of PI-3 Kinase with PAK1 Leads to Actin Phosphorylation and Cytoskeletal Reorganization. Mol Biol Cell 13: 2946–2962, 2002

    Google Scholar 

  20. Bokoch GM, Reilly AM, Daniels RH, King CC, Olivera A, Spiegel S, Knaus UG: A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J Biol Chem 273: 8137–8144, 1998

    Google Scholar 

  21. King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA, Bokoch GM: p21-activated kinase (Pak1) is phosphorylated and activated by 3-phosphoinositidedependent kinase-1 (PDK1). J Biol Chem 275: 41201–41209, 2000

    Google Scholar 

  22. Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP, Kumar R: Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4: 681–690, 2002

    Google Scholar 

  23. Lian JP, Crossley L, Zhan Q, Huang R, Coffer P, Toker A, Robinson D, Badwey JA: Antagonists of calcium fluxes and calmodulin block activation of the p21-activated protein kinases in neutrophils. J Immunol 166: 2643–2650, 2001

    Google Scholar 

  24. Sanders LC, Matsumura F, Bokoch GM, de L: Inhibition of myosin light chain kinase by p21-activated kinase. Science 283: 2083–2085, 1999

    Google Scholar 

  25. Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB: Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 19: 839–854, 1998

    Google Scholar 

  26. Zeng Q, Lagunoff D, Masaracchia R, Goeckeler Z, Cote G, Wysolmerski R: Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci 113(Pt 3): 471–482, 2000

    Google Scholar 

  27. Kiosses WB, Daniels RH, Otey C, Bokoch GM, Schwartz MA: A role for p21-activated kinase in endothelial cell migration. J Cell Biol 147: 831–844, 1999

    Google Scholar 

  28. Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB: Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 275: 18366–18374, 2000

    Google Scholar 

  29. Dharmawardhane S, Sanders LC, Martin SS, Daniels RH, Bokoch GM: Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J Cell Biol 138: 1265–1278, 1997

    Google Scholar 

  30. Edwards DC, Sanders LC, Bokoch GM, Gill GN: Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signaling to actin cytoskeletal dynamics. Nat Cell Biol 1: 253–259, 1999

    Google Scholar 

  31. Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R: Regulatable expression of p21-activated kinase-1 promotes anchorageindependent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238–36244, 2000

    Google Scholar 

  32. Frost JA, KhokhlatchevA, Stippec S, White MA, Cobb MH: Differential effects of PAK1-activating mutations reveal activity-dependent and-independent effects on cytoskeletal regulation. J Biol Chem 273: 28191–28198, 1998

    Google Scholar 

  33. Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L: Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17: 1129–1143, 1997

    Google Scholar 

  34. Ohtakara K, Inada H, Goto H, Taki W, Manser E, Lim L, Izawa I, Inagaki M: p21-activated kinase PAK phosphorylates desmin at sites different from those for Rhoassociated kinase. Biochem Biophys Res Commun 272: 712–716, 2000

    Google Scholar 

  35. Goto H, Tanabe K, Manser E, Lim L, Yasui Y, Inagaki M: Phosphorylation and reorganization of vimentin by p21-activated kinase (Pak). Genes Cells 7: 91–97, 2002

    Google Scholar 

  36. Daub H, Gevaert K, Vandekerckhove J, Sobel A, Hall A: Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J Biol Chem 276: 1677–1680, 2001

    Google Scholar 

  37. Foster DB, Shen LH, Kelly J, Thibault P, Van E, Mak AS: Phosphorylation of caldesmon by p21-activated kinase. Implications for the Ca(2+) sensitivity of smooth muscle contraction. J Biol Chem 275: 1959–1965, 2000

    Google Scholar 

  38. Cau J, Faure S, Comps M, Delsert C, Morin N: A novel p21-activated kinase binds the actin and microtubule networks and induces microtubule stabilization. J Cell Biol 155: 1029–1042, 2001

    Google Scholar 

  39. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM: Rho family GTPases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak1. J Biol Chem 270: 23934–23936, 1995

    Google Scholar 

  40. Frost JA, Xu S, Hutchison MR, Marcus S, Cobb MH: Actions of Rho family small G proteins and p21-activated protein kinases on mitogen-activated protein kinase family members. Mol Cell Biol 16: 3707–3713, 1996

    Google Scholar 

  41. Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH: Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 275: 19693–19699, 2000

    Google Scholar 

  42. Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH: Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16: 6426–6438, 1997

    Google Scholar 

  43. Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, Cobb MH, Marshall MS, Brugge JS: Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol 10: 551–554, 2000

    Google Scholar 

  44. Chiloeches A, Mason CS, Marais R: S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3. Mol Cell Biol 21: 2423–2434, 2001

    Google Scholar 

  45. Howe AK, Juliano RL: Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2: 593–600, 2000

    Google Scholar 

  46. Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR, Jallal B, Smeal T: Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 277: 550–558, 2002

    Google Scholar 

  47. Sun H, King AJ, Diaz HB, Marshall MS: Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr Biol 10: 281–284, 2000

    Google Scholar 

  48. Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC, Bokoch GM: p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20: 453–461, 2000

    Google Scholar 

  49. Widmann C, Gibson S, Johnson GL: Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem 273: 7141–7147, 1998

    Google Scholar 

  50. Lee N, MacDonald H, Reinhard C, Halenbeck R, Roulston A, Shi T, Williams LT: Activation of hPAK65 by caspase cleavage induces some of the morphological and biochemical changes of apoptosis. Proc Natl Acad Sci USA 94: 13642–13647, 1997

    Google Scholar 

  51. Jakobi R, Moertl E, Koeppel MA: p21-activated protein kinase gamma-PAK suppresses programd cell death of BALB3T3 fibroblasts. J Biol Chem 276: 16624–16634, 2001

    Google Scholar 

  52. Bagheri Y, Mandal M, Taludker AH, Wang RA, Vadlamudi RK, Kung HJ, Kumar R: Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J Biol Chem 276: 29403–29409, 2001

    Google Scholar 

  53. Ellis LM, Fidler IJ: Angiogenesis and breast cancer metastasis. Lancet 346: 388–390, 1995

    Google Scholar 

  54. Fidler IJ: Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 87: 1588–1592, 1995

    Google Scholar 

  55. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364, 1996

    Google Scholar 

  56. Bagheri Y, Vadlamudi RK, Wang RA, Mendelsohn J, Kumar R: Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. J Biol Chem 275: 39451–39457, 2000

    Google Scholar 

  57. Kiosses WB, Hood J, Yang S, Gerritsen ME, Cheresh DA, Alderson N, Schwartz MA: A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ Res 90: 697–702, 2002

    Google Scholar 

  58. Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J: Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7: 202–210, 1997

    Google Scholar 

  59. Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R: Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275: 12041–12050, 2000

    Google Scholar 

  60. Sells MA, Pfaff A, Chernoff J: Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol 151: 1449–1458, 2000

    Google Scholar 

  61. Dharmawardhane S, Brownson D, Lennartz M, Bokoch GM: Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J Leukoc Biol 66: 521–527, 1999

    Google Scholar 

  62. Dharmawardhane S, Schurmann A, Sells MA, Chernoff J, Schmid SL, Bokoch GM: Regulation of macropinocytosis by p21-activated kinase-1. Mol Biol Cell 11: 3341–3352, 2000

    Google Scholar 

  63. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ: Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15: 1796–1807, 2001

    Google Scholar 

  64. Xiao GH, Beeser A, Chernoff J, Testa JR: p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277: 883–886, 2002

    Google Scholar 

  65. Zhang H, Li Z, Viklund EK, Stromblad S: p21-activated kinase 4 interacts with integrin alphavbeta5 and regulates alphavbeta5-mediated cell migration. J Cell Biol 158: 1287–1297, 2002

    Google Scholar 

  66. Faure S, Vigneron S, Doree M, Morin N: A member of the Ste20/PAK family of protein kinases is involved in both arrest of Xenopus oocytes at G2/prophase of the first meiotic cell cycle and in prevention of apoptosis. EMBO J 16: 5550–5561, 1997

    Google Scholar 

  67. Faure S, Vigneron S, Galas S, Brassac T, Delsert C, Morin N: Control of G2/M transition in Xenopus by a member of the p21-activated kinase (PAK) family: A link between protein kinase A and PAK signaling pathways? J Biol Chem 274: 3573–3579, 1999

    Google Scholar 

  68. Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R: p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3: 767–773, 2002

    Google Scholar 

  69. Thiel D, Reeder M, Pfaff A, Coleman T, Sells M, Chernoff J: Cell Cycle-Regulated Phosphorylation of p21-Activated Kinase 1. Curr Biol 12: 1227, 2002

    Google Scholar 

  70. Banerjee M, Worth D, Prowse D, Nikolic M: Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr Biol 12: 1233, 2002

    Google Scholar 

  71. Hofken T, Schiebel E: A role for cell polarity proteins in mitotic exit. EMBO J 21: 4851–4862, 2002

    Google Scholar 

  72. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG: Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97: 185–189, 2000

    Google Scholar 

  73. Salh B, Marotta A, Wagey R, Sayed M, Pelech S: Dysregulation of phosphatidylinositol 3-kinase and downstream effectors in human breast cancer. Int J Cancer 98: 148–154, 2002

    Google Scholar 

  74. Renkema GH, Pulkkinen K, Saksela K: Cdc42/Rac1-mediated activation primes PAK2 for superactivation by tyrosine phosphorylation. Mol Cell Biol 22: 6719–6725, 2002

    Google Scholar 

  75. Roig J, Tuazon PT, Zipfel PA, Pendergast AM, Traugh JA: Functional interaction between c-Abl and the p21-activated protein kinase gamma-PAK. Proc Natl Acad Sci USA 97: 14346–14351, 2000

    Google Scholar 

  76. McManus MJ, Boerner JL, Danielsen AJ, Wang Z, Matsumura F, Maihle NJ: An oncogenic epidermal growth factor receptor signals via a p21-activated kinase-caldesmon-myosin phosphotyrosine complex. J Biol Chem 275: 35328–35334, 2000

    Google Scholar 

  77. Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli B, Perucca L, Kelley PM, Pebusque MJ, Theillet C, Birnbaum D, Gaudray P: Detailed map of a region commonly amplified at 11q13→q14 in human breast carcinoma. Cytogenet Cell Genet 79: 125–131, 1997

    Google Scholar 

  78. Wang RA, Mazumdar A, Vadlamudi RK, Kumar R: P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J 21: 5437–5447, 2002

    Google Scholar 

  79. Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z: Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 276: 15345–15353, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna K. Vadlamudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadlamudi, R.K., Kumar, R. p21-activated kinases in human cancer. Cancer Metastasis Rev 22, 385–393 (2003). https://doi.org/10.1023/A:1023729130497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023729130497

Navigation