Skip to main content
Log in

The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: Biology and therapeutic relevance

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The development of the mammary gland requires the coordinated expression of hormones and growth factors. Likewise, some transformed breast cells continue to respond to these same extracellular signals. Thus, understanding the mechanisms that control normal development of tissues can lead to new therapeutic targets. The insulin-like growth factor (IGF) system plays an important role in the normal development and function of the mammary gland. Accumulating evidence suggests that the IGFs are also key regulators of the malignant phenotype. The IGFs stimulate proliferation, promote survival, and enhance metastatic potential of breast cancer cells. Although multiple receptors for the IGFs have been identified, the IGFs primarily exert their biologic effects through ligation of the type I IGF receptor tyrosine kinase (IGF1R). IGF binding to the IGF1R initiates an intracellular signaling cascade that leads to changes in gene expression and cell biology. This review will focus on the evidence that the IGF1R is a relevant treatment target in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleinberg DL, Feldman M, Ruan W: IGF-I: An essential factor in terminal end bud formation and ductal morphogenesis. J Mammary Gland Biol Neoplasia 5: 7–17, 2000

    Google Scholar 

  2. Beatson GT: On the treatment of inoperable cases of carcinoma of the mamma. Suggestions for a new method of treatment with illustrative cases. Lancet 2: 104–107, 1896

    Google Scholar 

  3. Allen E, Doisy EA: An ovarian hormone: Preliminary report on its localiszation, extraction, and partial purification and action in test animals. JAMA 81: 819–821, 1923

    Google Scholar 

  4. Osborne CK, Zhao H, Fuqua SA: Selective estrogen receptor modulators: Structure, function, and clinical use. J Clin Oncol 18: 3172–3186, 2000

    Google Scholar 

  5. Osborne CK: Tamoxifen in the treatment of breast cancer. N Engl J Med 339: 1609–1618, 1998

    Google Scholar 

  6. LeRoith D: Seminars in medicine of the Beth Israel Deaconess Medical Center: Insulin-like growth factors. New England Journal of Medicine 336: 633–640, 1997

    Google Scholar 

  7. DeChiara TM, Efstratiadis A, Robertson EJ: A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345: 78–80, 1990

    Google Scholar 

  8. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA: IGF-I is required for normal embryonicgrowth in mice. Genes Dev 7: 2609–2617, 1993

    Google Scholar 

  9. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulinlike growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75: 59–72, 1993

    Google Scholar 

  10. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D: Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96: 7324–7329, 1999

    Google Scholar 

  11. Ullrich A, Gray A, Tam AW, Yang Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y: Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define hormonal specificity. EMBO J 5: 2503–2512, 1986

    Google Scholar 

  12. Steele-Perkins G, Turner J, Edman JC, Hari J, Pierce SB, Stover C, Rutter WJ, Roth RA: Expression and characterization of a functional human insulin-like growth factor I receptor. J Biol Chem 263: 11486–11492, 1988

    Google Scholar 

  13. Giorgetti S, Pelicci PG, Pelicci G, Van Obberghen E: Involvement of Src-homology/collagen (SHC) proteins in signaling through the insulin receptor and the insulin-likegrowth-factor-I-receptor. Eur J Biochem 223: 195–202, 1994

    Google Scholar 

  14. Lamothe B, Bucchini D, Jami J, Joshi RL: Interaction of p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analyzed by using the two-hybrid system. FEBS Lett 373: 51–55, 1995

    Google Scholar 

  15. Morrione A, Valentinis B, Li S, Ooi JY, Margolis B, Baserga R: Grb10: A new substrate of the insulin-like growth factor I receptor. Cancer Res 56: 3165–3167, 1996

    Google Scholar 

  16. Baron V, Calleja V, Ferrari P, Alengrin F, Van Obberghen E: p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J Biol Chem 273: 7162–7168, 1998

    Google Scholar 

  17. Arbet-Engels C, Tartare-Deckert S, Eckhart W: C-terminal Srckinase associates with ligand-stimulated insulin-like growth factor-I receptor. J Biol Chem 274: 5422–5428, 1999

    Google Scholar 

  18. Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D: in vivo regulation of CrkII and CrkL protooncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and Tyrosine kinase and breast cancer: Biology and therapeutic relevance 333 association with paxillin. J Biol Chem 272: 27660–27664, 1997

    Google Scholar 

  19. Xiao S, Rose DW, Sasaoka T, Maegawa H, Burke TR Jr., Roller PP, Shoelson SE, Olefsky JM: Syp (SH-PTP2) is a positive mediator of growth factor-stimulated mitogenic signal transduction. J Biol Chem 269: 21244–21248, 1994

    Google Scholar 

  20. Myers MG Jr., Sun XJ, White MF: The IRS-1 signaling system. Trends Biochem Sci 19: 289–293, 1994

    Google Scholar 

  21. He W, Craparo A, Zhu Y, O'Neill TJ, Wang LM, Pierce JH, Gustafson TA: Interaction of insulin receptor substrate-2 (IRS-2) with the insulin and insulin-like growth factor I receptors. Evidence for two distinct phosphotyrosine-dependent interaction domains within IRS-2. J Biol Chem 271: 11641–11645, 1996

    Google Scholar 

  22. Qu BH, Karas M, Koval A, LeRoith D: Insulin receptor substrate-4 enhances insulin-like growth factor-I-induced cell proliferation. J Biol Chem 274: 31179–31184, 1999

    Google Scholar 

  23. Tsuruzoe K, Emkey R, Kriauciunas KM, Ueki K, Kahn CR: Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1-and IRS-2-mediated signaling. Mol Cell Biol 21: 26–38, 2001

    Google Scholar 

  24. Jackson JG, White MF, Yee D: Insulin receptor substrate-1 is the predominant signaling molecule activated by insulinlike growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells. J Biol Chem 273: 9994–10003, 1998

    Google Scholar 

  25. Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ: Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329: 301–307, 1987

    Google Scholar 

  26. Papa V, Pezzino V, Costantino A, Belfiore A, Giuffrida D, Frittitta L, Vannelli GB, Brand R, Goldfine ID, Vigneri R: Elevated insulin receptor content in human breast cancer. J Clin Invest 86: 1503–1510, 1990

    Google Scholar 

  27. Sciacca L, Costantino A, Pandini G, Mineo R, Frasca F, Scalia P, Sbraccia P, Goldfine ID, Vigneri R, Belfiore A: Insulin receptor activation by IGF-II in breast cancers: Evidence for a new autocrine/paracrine mechanism. Oncogene 18: 2471–2479, 1999

    Google Scholar 

  28. Siddle K, Soos MA, Field CE, Nave BT: Hybrid and atypical insulin/insulin-like growth factor I receptors. Horm Res 41: 56–64; discussion 65, 1994

    Google Scholar 

  29. Shaw LM: Identification of insulin receptor substrate 1 (IRS-1) and IRS-2 as signaling intermediates in the alpha6beta4 integrin-dependent activation of phosphoinositide 3-OH kinase and promotion of invasion. Mol Cell Biol 21: 5082–5093, 2001

    Google Scholar 

  30. Belfiore A, Pandini G, Vella V, Squatrito S, Vigneri R: Insulin/IGF-I hybrid receptors play a major role in IGF-I signaling in thyroid cancer. Biochimie 81: 403–407, 1999

    Google Scholar 

  31. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, Siddle K, Goldfine ID, Belfiore A: Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: Evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 5: 1935–1944, 1999

    Google Scholar 

  32. Soos MA, Siddle K: Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J 263: 553–563, 1989

    Google Scholar 

  33. Kleinberg DL, Ruan W, Catanese V, Newman CB, Feldman M: Non-lactogenic effects of growth hormone on growth and insulin-like growth factor-I messenger ribonucleic acid of rat mammary gland. Endocrinology 126: 3274–3276, 1990

    Google Scholar 

  34. Ruan W, Newman CB, Kleinberg DL: Intact and aminoterminally shortened forms of insulin-like growth factor I induce mammary gland differentiation and development. Proc Natl Acad Sci USA 89: 10872–10876, 1992

    Google Scholar 

  35. Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140: 5075–5081, 1999

    Google Scholar 

  36. Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM: Targeted expression of des(1–3) human insulinlike growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology 137: 321–330, 1996

    Google Scholar 

  37. Neuenschwander S, Schwartz A, Wood TL, Roberts CT Jr., Henninghausen L, LeRoith D: Involution of the lactating mammary gland is inhibited by the IGF system in a transgenicmouse model. J Clin Invest 97: 2225–2232, 1996

    Google Scholar 

  38. Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM: Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene 19: 889–898, 2000

    Google Scholar 

  39. Kaleko M, Rutter WJ, Miller AD: Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastictransformation. Mol Cell Biol 10: 464–473, 1990

    Google Scholar 

  40. Baserga R, Sell C, Porcu P, Rubini M: The role of the IGFI receptor in the growth and transformation of mammalian cells. Cell Prolif 27: 63–71, 1994

    Google Scholar 

  41. Morrione A, DeAngelis T, Baserga R: Failure of the bovine papillomavirus to transform mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor genes. J Virol 69: 5300–5303, 1995

    Google Scholar 

  42. Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R: Simian virus 40 large tumor antigen is unable to transform mouse embryonicfibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 90: 11217–11221, 1993

    Google Scholar 

  43. Sell C, Dumenil G, Deveaud C, Miura M, Coppola D, DeAngelis T, Rubin R, Efstratiadis A, Baserga R: Effect of a null mutation of the insulin-like growth factor I receptor gene on growth and transformation of mouse embryo fibroblasts. Mol Cell Biol 14: 3604–3612, 1994

    Google Scholar 

  44. Resnicoff M, Coppola D, Sell C, Rubin R, Ferrone S, Baserga R: Growth inhibition of human melanoma cells in nude mice by antisense strategies to the type 1 insulin-like growth factor receptor. Cancer Res 54: 4848–4850, 1994

    Google Scholar 

  45. Cullen KJ, Yee D, Sly WS, Perdue J, Hampton B, Lippman ME, Rosen N: Insulin-like growth factor receptor expression and function in human breast cancer. Cancer Res 50: 48–53, 1990 334 Gross and Yee

    Google Scholar 

  46. Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V: Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer. Cancer Res 53: 3736–3740, 1993

    Google Scholar 

  47. Pollak MN: Endocrine effects of IGF-I on normal and transformed breast epithelial cells: Potential relevance to strategies for breast cancer treatment and prevention. Breast Cancer Res Treat 47: 209–217, 1998

    Google Scholar 

  48. Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M: Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351: 1393–1396, 1998

    Google Scholar 

  49. Devi GR, De Souza AT, Byrd JC, Jirtle RL, MacDonald RG: Altered ligand binding by insulin-like growth factor II/mannose 6-phosphate receptors bearing missense mutations in human cancers. Cancer Res 59: 4314–4319, 1999

    Google Scholar 

  50. Hankins GR, De Souza AT, Bentley RC, Patel MR, Marks JR, Iglehart JD, Jirtle RL: M6P/IGF2 receptor: A candidate breast tumor suppressor gene. Oncogene 12: 2003–2009, 1996

    Google Scholar 

  51. Oates AJ, Schumaker LM, Jenkins SB, Pearce AA, DaCosta SA, Arun B, Ellis MJ: The mannose 6-phosphate/ insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene. Breast Cancer Res Treat 47: 269–281, 1998

    Google Scholar 

  52. Lee AV, Hilsenbeck SG, Yee D: IGF system components as prognostic markers in breast cancer. Breast Cancer Res Treat 47: 295–302, 1998

    Google Scholar 

  53. Peyrat JP, Bonneterre J, Beuscart R, Djiane J, Demaille A: Insulin-like growth factor 1 receptors in human breast cancer and their relation to estradiol and progesterone receptors. Cancer Res 48: 6429–6433, 1988

    Google Scholar 

  54. Bonneterre J, Peyrat JP, Beuscart R, Demaille A: Prognostic significance of insulin-like growth factor 1 receptors in human breast cancer. Cancer Res 50: 6931–6935, 1990

    Google Scholar 

  55. Rocha RL, Hilsenbeck SG, Jackson JG, VanDenBerg CL, Weng C, Lee AV, Yee D: Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: Correlation with clinical parameters and disease-free survival. Clin Cancer Res 3: 103–109, 1997

    Google Scholar 

  56. Karey KP, Sirbasku DA: Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17 beta-estradiol. Cancer Res 48: 4083–4092, 1988

    Google Scholar 

  57. Yee D, Lee AV: Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 5: 107–115, 2000

    Google Scholar 

  58. Dupont J, Le Roith D: Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: New insights into their synergistic effects. Mol Pathol 54: 149–154, 2001

    Google Scholar 

  59. Buzdar AU: Endocrine therapy in the treatment of metastatic breast cancer. Semin Oncol 28: 291–304, 2001

    Google Scholar 

  60. Stewart AJ, Westley BR, May FE: Modulation of the proliferative response of breast cancer cells to growth factors by oestrogen. Br J Cancer 66: 640–648, 1992

    Google Scholar 

  61. Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, Yee D: Enhancement of insulinlike growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 13: 787–796, 1999

    Google Scholar 

  62. Oesterreich S, Zhang P, Guler RL, Sun X, Curran EM, Welshons WV, Osborne CK, Lee AV: Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res 61: 5771–5777, 2001

    Google Scholar 

  63. Vignon F, Bouton MM, Rochefort H: Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem Biophys Res Commun 146: 1502–1508, 1987

    Google Scholar 

  64. Katzenellenbogen BS, Norman MJ: Multihormonal regulation of the progesterone receptor in MCF-7 human breast cancer cells: Interrelationships among insulin/insulin-like growth factor-I, serum, and estrogen. Endocrinology 126: 891–898, 1990

    Google Scholar 

  65. Lee AV, Weng CN, Jackson JG, Yee D: Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol 152: 39–47, 1997

    Google Scholar 

  66. Gooch JL, Van Den Berg CL, Yee D: Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death-proliferative and anti-apoptotic effects. Breast Cancer Res Treat 56: 1–10, 1999

    Google Scholar 

  67. Dunn SE, Hardman RA, Kari FW, Barrett JC: Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 57: 2687–2693, 1997

    Google Scholar 

  68. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, Burgaud JL, Carter D, Baserga R, Glazer PM: Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57: 3079–3083, 1997

    Google Scholar 

  69. Kulik G, Klippel A, Weber MJ: Antiapoptoticsignaling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17: 1595–1606, 1997

    Google Scholar 

  70. Kulik G, Weber MJ: Akt-dependent and-independent survival signaling pathways utilized by insulin-like growth factor I. Mol Cell Biol 18: 6711–6718, 1998

    Google Scholar 

  71. Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R: Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol 19: 7203–7215, 1999

    Google Scholar 

  72. Samani AA, Brodt P: The receptor for the type I insulinlike growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am 10: 289–312, viii. 2001

    Google Scholar 

  73. Doerr ME, Jones JI: The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271: 2443–2447, 1996

    Google Scholar 

  74. Dunn SE, Ehrlich M, Sharp NJ, Reiss K, Solomon G, Hawkins R, Baserga R, Barrett JC: A dominant negative Tyrosine kinase and breast cancer: Biology and therapeutic relevance 335 mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 58: 3353–3361, 1998

    Google Scholar 

  75. Lee OH, Bae SK, Bae MH, Lee YM, Moon EJ, Cha HJ, Kwon YG, Kim KW: Identification of angiogenic properties of insulin-like growth factor II in in vitro angiogenesis models. Br J Cancer 82: 385–391, 2000

    Google Scholar 

  76. Long L, Navab R, Brodt P: Regulation of the Mr 72,000 type IV collagenase by the type I insulin-like growth factor receptor. Cancer Res 58: 3243–3247, 1998

    Google Scholar 

  77. Bae MH, Lee MJ, Bae SK, Lee OH, Lee YM, Park BC, Kim KW: Insulin-like growth factor II (IGF-II) secreted from HepG2 human hepatocellular carcinoma cells shows angiogenic activity. Cancer Lett 128: 41–46, 1998

    Google Scholar 

  78. Giancotti FG, Ruoslahti E: Integrin signaling. Science 285: 1026–1032, 1999

    Google Scholar 

  79. Vuori K, Ruoslahti E: Association of insulin receptor substrate-1 with integrins. Science 266: 1576–1578, 1994

    Google Scholar 

  80. Lebrun P, Mothe-Satney I, Delahaye L, Van Obberghen E, Baron V: Insulin receptor substrate-1 as a signaling molecule for focal adhesion kinase pp125(FAK) and pp60(src). J Biol Chem 273: 32244–32253, 1998

    Google Scholar 

  81. Guvakova MA, Surmacz E: The activated insulin-like growth factor I receptor induces depolarization in breast epithelial cells characterized by actin filament disassembly and tyrosine dephosphorylation of FAK, Cas, and paxillin. Exp Cell Res 251: 244–255, 1999

    Google Scholar 

  82. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM: Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91: 949–960, 1997

    Google Scholar 

  83. Mercurio AM, Bachelder RE, Chung J, O'Connor KL, Rabinovitz I, Shaw LM, Tani T: Integrin laminin receptors and breast carcinoma progression. J Mammary Gland Biol Neoplasia 6: 299–309, 2001

    Google Scholar 

  84. Clemmons DR, Horvitz G, Engleman W, Nichols T, Moralez A, Nickols GA: Synthetic alphaVbeta3 antagonists inhibit insulin-like growth factor-I-stimulated smooth muscle cell migration and replication. Endocrinology 140: 4616–4621, 1999

    Google Scholar 

  85. Brooks PC, Klemke RL, Schon S, Lewis JM, Schwartz MA, Cheresh DA: Insulin-like growth factor receptor cooperates with integrin avb5 to promote tumor cell dissemination in vivo. J Clin Invest 99: 1390–1398, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Yee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, J.M., Yee, D. The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: Biology and therapeutic relevance. Cancer Metastasis Rev 22, 327–336 (2003). https://doi.org/10.1023/A:1023720928680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023720928680

Navigation