Skip to main content
Log in

Vortex Lattice Melting into Pinned Liquid State in La2−x Sr x CuO4

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Magnetization measurements in La2−x Sr x CuO4 (LSCO) crystals indicate vortex order-disorder transition manifested by a sharp kink in the second magnetization peak. The transition field exhibits unique temperature dependence, namely a strong decrease with temperature in the entire measured range. This behavior rules out the conventional interpretation of a disorder-driven transition into an entangled vortex solid phase. We argue that the transition in LSCO is driven by both thermally- and disorder-induced fluctuations. The resulting “pinned liquid” disordered state is characterized by large thermal fluctuations and irreversible magnetic behavior. We extend these results and postulate that melting, solid-solid, and solid to pinned liquid transitions, are special cases of a unified order-disorder phase transition driven by both thermally- and disorder-induced fluctuations. The temperature dependence of the transition line and the nature of the disordered phase (solid, liquid, or pinned liquid) are determined by the relative contributions of these fluctuations and by the pinning mechanism. By varying the pinning mechanism and the pinning strength one obtains a spectrum of transition lines. In order to test our numerical results we present studies on a series of irradiated LSCO crystals, and show that increase of pinning, causes a depression of the transition line as well as a decrease in the curvature as the transition line, in agreement with our calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Zeldov, D. Majer, M. Konczykowski, V. B. Geshkenbein, V. M. Vinokur, and H. Shtrikman, Nature 375, 373(1995).

    Google Scholar 

  2. B. Khaykovich, E. Zeldov, D. Majer, T. W. Li, P. H. Kes, and M. Konczykowski, Phys. Rev. Lett. 76, 2555(1996).

    Google Scholar 

  3. K. Deligiannis, P. A. J. deGroot, M. Oussena, S. Pinfold, R. Langan, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 79, 2121(1997).

    Google Scholar 

  4. D. Giller, A. Shaulov, Y. Yeshurun, and J. Giapintzakis, Phys. Rev. B 60, 106(1999).

    Google Scholar 

  5. T. Nishizaki, T. Naito, S. Okayasu, A. Iwase, and N. Kobayashi, Phys. Rev. B 61, 3649(2000).

    Google Scholar 

  6. D. Giller, A. Shaulov, R. Prozorov, Y. Abulafia, Y. Wolfus, L. Burlachkov, Y. Yeshurun, E. Zeldov, V. M. Vinokur, J. L. Peng, and R. L. Greene, Phys. Rev. Lett. 79, 2542(1997).

    Google Scholar 

  7. M. Baziljevich, D. Giller, M. McElfresh, Y. Abulafia, Y. Radzyner, J. Schneck, T. H. Johansen, and Y. Yeshurun, Phys. Rev. B 62, 4058(2000).

    Google Scholar 

  8. Y. Radzyner, A. Shaulov, Y. Yeshurun, I. Felner, K. Kishio, and J. Shimoyama, Phys. Rev. B 65, R100503(2002).

    Google Scholar 

  9. D. Ertas and D. R. Nelson, Physica C 272, 79(1996).

    Google Scholar 

  10. V. Vinokur, B. Khaykovich, E. Zeldov, M. Konczykowski, R. A. Doyle, and P. H. Kes, Physica C 295, 209(1998).

    Google Scholar 

  11. T. Giamarchi and P. LeDoussal, Phys. Rev. B 55, 6577(1997).

    Google Scholar 

  12. S. B. Roy and P. Chaddah, Physica C 279, 70(1997).

    Google Scholar 

  13. Y. Radzyner, S. B. Roy, D. Giller, Y. Wolfus, A. Shaulov, P. Chaddah, and Y. Yeshurun, Phys. Rev. B 61, 14362(2000).

    Google Scholar 

  14. T. Sasagawa, K. Kishio, Y. Togawa, J. Shimoyama, and K. Kitazawa, Phys. Rev. Lett. 80, 4297(1998).

    Google Scholar 

  15. Y. Radzyner, A. Shaulov, Y. Yeshurun, I. Felner, K. Kishio, and J. Shimoyama, Phys. Rev. B 65, 214525.

  16. G. P. Mikitik and E. H. Brandt, Phys. Rev. B 64, 184514(2001).

    Google Scholar 

  17. Y. Radzyner, A. Shaulov, and Y. Yeshurun, Phys. Rev. B 65, R100513(2002).

    Google Scholar 

  18. Y. Radzyner, A. Shaulov, Y. Yeshurun, K. Kishio, and S. Okayasu, Proceedings of LT23, Hiroshima, Japan, in print (2002).

  19. Y. Togawa, T. Sasagawa, J. Shimoyama, and K. Kishio, in Advances in Superconductivity XI. Proceedings of the 11th International Symposium on Superconductivity, Springer-Verlag (1999), pp. 613–16, Tokyo, Japan., edited by S. Tajima.

    Google Scholar 

  20. R. J. Birgeneau and G. Shirane, in Physical Properties of High Temperature Superconductors I., edited by D. M. Ginsberg (World Scientific, 1989), p. 151.

  21. B. Khaykovich, M. Konczykowski, E. Zeldov, R. A. Doyle, D. Majer, P. H. Kes, and T. W. Li, Phys. Rev. B 56, R517(1997).

    Google Scholar 

  22. V. Vinokur, B. Khaykovich, and E. Zeldov, (private communication).

  23. Y. Y. Goldschmidt, Phys. Rev. B 56, 2800(1997).

    Google Scholar 

  24. J. Kierfeld and V. Vinokur, Phys. Rev. B 61, R14928(2000).

    Google Scholar 

  25. M. Pissas, E. Moraitakis, G. Kallias, and A. Bondarenko, Phys. Rev. B 62, 1446(2000).

    Google Scholar 

  26. C. J. van der Beek, S. Colson, M. V. Indenbom, and M. Konczykowski, Phys. Rev. Lett. 84, 4196(2000).

    Google Scholar 

  27. N. Avraham, B. Khaykovich, Y. Myasoedov, M. Rappaport, H. Shtrikman, D. E. Feldman, T. Tamegai, P. H. Kes, M. Li, M. Konczykowski, K. van der Beek, and E. Zeldov, Nature 411, 451(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radzyner, Y., Shaulov, A. & Yeshurun, Y. Vortex Lattice Melting into Pinned Liquid State in La2−x Sr x CuO4 . Journal of Low Temperature Physics 131, 883–891 (2003). https://doi.org/10.1023/A:1023495414305

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023495414305

Keywords

Navigation