Skip to main content
Log in

Thermoresponsive hydrogel with rapid response dynamics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Intelligent hydrogels, particularly poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogels, have attracted extensive interest because the soft wet hydrogels can change their shapes in response to the small changes of environmental factors like temperature. In order to fully make use of this unique property of PNIPAAm-based hydrogels, the response rates of the PNIPAAm hydrogels have to be improved since the dynamics property is critical to certain applications of this material. In this paper, the thermo-sensitive PNIPAAm hydrogels were successfully synthesized by carrying out the polymerization of N-isopropylacrylamide monomer in vacuum (−100 kPa) at room temperature (22 °C). The resultant hydrogel has tremendously improved shrinking rate as well as the large volume changes upon temperature stimulation when comparing with the normal PNIPAAm hydrogel. The SEM micrographs revealed that the improved properties were attributed to the macroporous network structure generated during the synthesis under vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Chen and A. S. Hoffman, Nature 373 (1995) 49.

    Google Scholar 

  2. Z. Liu and P. Calvert, Adv. Mater. 12 (2000) 288.

    Google Scholar 

  3. T. Miyata, N. Asami and T. Uragami, Nature 399 (1999) 766.

    Google Scholar 

  4. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo and H. Misawa, Nature 408 (2000) 178.

    Google Scholar 

  5. L. D. Taylor and L. D. Cerankowski, J. Polym. Sci.: Polym. Chem. Ed. 13 (1975) 2551.

    Google Scholar 

  6. Y. Hirokawa and T. Tanaka, J. Chem. Phys. 81 (1984) 6379.

    Google Scholar 

  7. B. Vernon, S. W. Kim and Y. H. Bae, J. Biomed. Mater. Res. 51 (2000) 69.

    Google Scholar 

  8. P. S. Stayton, T. Shimobji, C. Long, A. Chilkoti, G. Chen, J. M. Harris and A. S. Hoffman, Nature 378 (1995) 472.

    Google Scholar 

  9. C. Ramkissoon-Ganorkar, F. Liu, M. Baudyš and S. W. Kim, J. controlled Release 59 (1999) 287.

    Google Scholar 

  10. Y. Osada, H. Okuzaki and H. Hori, Nature 355 (1992) 242.

    Google Scholar 

  11. B. G. Kabra and S. H. Gehrke, Polym. Commun. 32 (1991) 322.

    Google Scholar 

  12. X. S. Wu, A. S. Hoffman and P. Yager, J. Polym. Sci., Part A, Polym. Chem. 30 (1992) 2121.

    Google Scholar 

  13. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai and T. Okano, Nature 374 (1995) 240.

    Google Scholar 

  14. X. Z. Zhang and R. X. Zhuo, Macromol. Rapid Commun. 4 (1999) 229.

    Google Scholar 

  15. X. Z. Zhang and R. X. Zhuo, Macromol. Chem. Phys. 200 (1999) 2602.

    Google Scholar 

  16. X. Z. Zhang and R. X. Zhuo, Langmuir 17 (2001) 12.

    Google Scholar 

  17. X. Z. Zhang, Y. Y. Yang, T. S. Chung and K. X. Ma, Langmuir 17 (2001) 6094.

    Google Scholar 

  18. H. Feil, Y. Bae, J. Feijen and S. W. Kim, Macromolecules 26 (1993) 2496.

    Google Scholar 

  19. H. Inomato, S. Goto and S. Saito, Macromolecules 23 (1990) 4887.

    Google Scholar 

  20. T. Tokuhiro, T. Amiya, A. Mamada and T. Tanaka, Macromolecules 24 (1991) 2936.

    Google Scholar 

  21. G. Bokias, D. Hourdet, I. Iliopoulos, G. Staikos and R. Audebert, Macromolecules 30 (1997) 8293.

    Google Scholar 

  22. S. Okazaki, K. Nakanishi and H. Touhara, J. Chem. Phys. 78 (1983) 454.

    Google Scholar 

  23. S. Panyukov and Y. Rabin, Phys. Rep. 269 (1996) 1.

    Google Scholar 

  24. C. Nakamoto, T. Motonaga and M. Shibayama, Macromolecules, 34 (2001) 911.

    Google Scholar 

  25. C. Alvarez-Lorenzo, O. Guney, T. Oya, Y. Sakai, M. Kobayashi, T. Enoki, Y. Takeoka, T. Ishibashi, K. Kuroda, K. Tanaka, G. Wang, A. Yu, G. S. Masamune and T. Tanaka, Macromolecules, 33 (2000) 8693.

    Google Scholar 

  26. K. Otake, H. Inomata, M. Konno and S. Saito, Macromolecules 23 (1990) 283.

    Google Scholar 

  27. E. S. Matsuo and T. Tanaka, J. Chem. Phys. 89 (1988) 1695.

    Google Scholar 

  28. Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai and T. Okano, Macromolecules 28 (1995) 7717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Chang Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XZ., Wang, FJ. & Chu, CC. Thermoresponsive hydrogel with rapid response dynamics. Journal of Materials Science: Materials in Medicine 14, 451–455 (2003). https://doi.org/10.1023/A:1023219019500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023219019500

Keywords

Navigation