Skip to main content
Log in

Cell surface association of matrix metalloproteinase-9 (gelatinase B)

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Matrix metalloproteinase (MMP)-9 (gelatinase B) belongs to the MMP family of zinc-dependent endopeptidases that has been associated with tumor cell invasion and metastasis and tumor-induced angiogenesis. As a secreted MMP, pro-MMP-9 is released into the extracellular environment by both tumor and stroma cells, where it fulfills its proteolytic functions degrading both extracellular matrix (ECM) and non-ECM proteins. A major dilemma in our understanding of MMP-9 function is how the released protease is targeted to the right location and how its activity is controlled at the pericellular space. It has been proposed that MMP-9 interact with cell surface components and that this type of interaction positively regulates enzymatic activation and activity. However, recent evidence shows that association of MMP-9 with the cell surface is mediated by a distinct array of surface proteins that serve to regulate multiple aspects of the enzyme function including localization, inhibition and internalization. How these distinct mechanisms regulate the overall MMP-9 activity at the pericellular space remains an important goal in our understanding of MMP-9 function at the cell surface. Furthermore, the study of surface-associated MMP-9 imposes new conceptual and methodological challenges with particular consideration to the unique structural and functional characteristics of this key enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang S, Van Arsdall M, Tedjarati S, McCarty M, Wu W, Langley R, Fidler IJ: Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. J Natl Cancer Inst 94: 1134–1142, 2002

    Google Scholar 

  2. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737–744, 2000

    Google Scholar 

  3. Coussens LM, Tinkle CL, Hanahan D, Werb Z: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103: 481–490, 2000

    Google Scholar 

  4. McCawley LJ, Matrisian LM: Matrix metalloproteinases: They're not just for matrix anymore! Curr Opin Cell Biol 13: 534–540, 2001

    Google Scholar 

  5. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM: Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289: 1202–1206, 2000

    Google Scholar 

  6. Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer 2: 161–174, 2002

    Google Scholar 

  7. Ochieng J, Fridman R, Nangia-Makker P, Kleiner DE, Liotta LA, Stetler-Stevenson WG, Raz A: Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and-9. Biochemistry 33: 14109–14114, 1994

    Google Scholar 

  8. Yu Q, Stamenkovic I: Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176, 2000

    Google Scholar 

  9. Patterson BC, Sang QA: Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/ type IV collagenase (MMP-9). J Biol Chem 272: 28823–28825, 1997

    Google Scholar 

  10. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S: Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109: 625–637, 2002

    Google Scholar 

  11. Belaaouaj AA, Li A, Wun TC, Welgus HG, Shapiro SD: Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem 275: 27123–27128, 2000

    Google Scholar 

  12. Werb Z: ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91: 439–442, 1997

    Google Scholar 

  13. Elkins PA, Ho YS, Smith WW, Janson CA, D'Alessio KJ, McQueney MS, Cummings MD, Romanic AM: Structure of the C-terminally truncated human ProMMP9, a gelatinbinding matrix metalloproteinase. Acta Crystallogr D Biol Crystallogr 58: 1182–1192, 2002

    Google Scholar 

  14. Morgunova E, Tuuttila A, Bergmann U, Isupov M, Lindqvist Y, Schneider G, Tryggvason K: Structure of human pro-matrix metalloproteinase-2: Activation mechanism revealed. Science 284: 1667–1670, 1999

    Google Scholar 

  15. Van Wart HE, Birkedal-Hansen H: The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87: 5578–5582, 1990

    Google Scholar 

  16. Kotra LP, Cross JB, Shimura Y, Fridman R, Schlegel HB, Mobashery S: Insight into the complex and dynamic process of activation of matrix metalloproteinases. J Am Chem Soc 123: 3108–3113, 2001

    Google Scholar 

  17. Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SM, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 319: 173–181, 2002

    Google Scholar 

  18. Stocker W, Bode W: Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr Opin Struct Biol 5: 383–390, 1995

    Google Scholar 

  19. Bode W, Gomis-Ruth FX, Stockler W: Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Metturn) and topologies and should be grouped into a common family, the ‘metzincins’. FEBS Lett 331: 134–140, 1993

    Google Scholar 

  20. Briknarova K, Grishaev A, Banyai L, Tordai H, Patthy L, Llinas M: The second type II module from human matrix metalloproteinase 2: Structure, function and dynamics. Structure Fold Des 7: 1235–1245, 1999

    Google Scholar 

  21. Li J, Brick P, Blow DM: Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing calcium-linked, four-bladed beta-propeller. Structure 3: 541, 1995

    Google Scholar 

  22. Libson AM, Gittis AG, Collier IE, Marmer BL, Goldberg GI, Lattman EE: Crystal structure of the haemopexin-like C-terminal domain of gelatinase A. Nat Struct Biol 2: 938–942, 1995

    Google Scholar 

  23. Gomis-Ruth FX, Gohlke U, Betz M, Knauper V, Murphy G, Lopez-Otin C, Bode W: The helping hand of collagenase-3 (MMP-13): 2.7 A crystal structure of its Cterminal haemopexin-like domain. J Mol Biol 264: 556–566, 1996

    Google Scholar 

  24. Cha H, Kopetzki E, Huber R, Lanzendorfer M, Brandstetter H: Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 320: 1065–1079, 2002

    Google Scholar 

  25. Goldberg GI, Marmer BL, Grant GA, Eisen AZ, Wilhelm S, He CS: Human 72-kilodalton type IV collagenase forms a complex with a tissue inhibitor of metalloproteases designated TIMP-2. Proc Natl Acad Sci USA 86: 8207–8211, 1989

    Google Scholar 

  26. Butler GS, Apte SS, Willenbrock F, Murphy G: Human tissue inhibitor of metalloproteinases 3 interacts with both the N-and C-terminal domains of gelatinases A and B. Regulation by polyanions. J Biol Chem 274: 10846–10851, 1999

    Google Scholar 

  27. Olson MW, Gervasi DC, Mobashery S, Fridman R: Kinetic analysis of the binding of human matrix metalloproteinase-2 and-9 to tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem 272: 29975–29983, 1997

    Google Scholar 

  28. Kotra LP, Zhang L, Fridman R, Orlando R, Mobashery S: Glycosylation pattern of the Zymogenic Form of Human Matrix Metalloproteinase-9. Bioorganic Chemistry 5: 356–370, 2002

    Google Scholar 

  29. Mattu TS, Royle L, Langridge J, Wormald MR, Van den Steen PE, Van Damme J, Opdenakker G, Harvey DJ, Dwek RA, Rudd PM: O-glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase-HPLC and online tandem mass spectrometry: Implications for the domain organization of the enzyme. Biochemistry 39: 15695–15704, 2000

    Google Scholar 

  30. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE: Multiple modes of activation of latent human fibroblast collagenase: Evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA 87: 364–368, 1990

    Google Scholar 

  31. Ogata Y, Enghild JJ, Nagase H: Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. J Biol Chem 267: 3581–3584, 1992

    Google Scholar 

  32. O'Connell JP, Willenbrock F, Docherty AJ, Eaton D, Murphy G: Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem 269: 14967–14973, 1994

    Google Scholar 

  33. Olson MW, Bernardo MM, Pietila M, Gervasi DC, Toth M, Kotra LP, Massova I, Mobashery S, Fridman R: Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9. Differential rates for activation by stromelysin 1. J Biol Chem 275: 2661–2668, 2000

    Google Scholar 

  34. Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T: Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymic properties. J Biol Chem 267: 21712–21719, 1992

    Google Scholar 

  35. Fridman R, Toth M, Pena D, Mobashery S: Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Cancer Res 55: 2548–2555, 1995

    Google Scholar 

  36. von Bredow DC, Cress AE, Howard EW, Bowden GT, Nagle RB: Activation of gelatinase-tissue-inhibitors-ofmetalloproteinase complexes by matrilysin. Biochem J 331 (Pt 3): 965–972, 1998

    Google Scholar 

  37. Knauper V, Smith B, Lopez-Otin C, Murphy G: Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J Biochem 248: 369–373, 1997

    Google Scholar 

  38. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP: Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274: 13066–13076, 1999

    Google Scholar 

  39. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI: Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270: 5331–5338, 1995

    Google Scholar 

  40. Knauper V, Will H, Lopez-Otin C, Smith B, Atkinson SJ, Stanton H, Hembry RM, Murphy G: Cellular mechanisms for human procollagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J Biol Chem 271: 17124–17131, 1996

    Google Scholar 

  41. Han YP, Nien YD, Garner WL: Tumor necrosis factoralpha-induced proteolytic activation of pro-matrix metalloproteinase-9 by human skin is controlled by down-regulating tissue inhibitor of metalloproteinase-1 and mediated by tissue-associated chymotrypsin-like proteinase. J Biol Chem 277: 27319–27327, 2002

    Google Scholar 

  42. Sorsa T, Salo T, Koivunen E, Tyynela J, Konttinen YT, Bergmann U, Tuuttila A, Niemi E, Teronen O, Heikkila P, Tschesche H, Leinonen J, Osman S, Stenman UH: Activation of type IV procollagenases by human tumorassociated trypsin-2. J Biol Chem 272: 21067–21074, 1997

    Google Scholar 

  43. Fang KC, Raymond WW, Blount JL, Caughey GH: Dog mast cell alpha-chymase activates progelatinase B by cleaving the Phe88-Gln89 and Phe91-Glu92 bonds of the catalytic domain. J Biol Chem 272: 25628–25635, 1997

    Google Scholar 

  44. Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D: Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13: 1382–1397, 1999

    Google Scholar 

  45. Gervasi DC, Raz A, Dehem M, Yang M, Kurkinen M, Fridman R: Carbohydrate-mediated regulation of matrix metalloproteinase-2 activation in normal human fibroblasts and fibrosarcoma cells. Biochem Biophys Res Commun 228: 530–538, 1996

    Google Scholar 

  46. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, van Westrum SS, Crabbe T, Clements J, d'Ortho MP, Murphy G: The TIMP2 membrane type 1 metalloproteinase “receptor” regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 273: 871–880, 1998

    Google Scholar 

  47. Toth M, Gervasi DC, Fridman R: Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A breast epithelial cells. Cancer Res 57: 3159–3167, 1997

    Google Scholar 

  48. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H: Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276: 29596–29602, 2001

    Google Scholar 

  49. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA: S-nitrosylation of matrix metalloproteinases: Signaling pathway to neuronal cell death. Science 297: 1186–1190, 2002

    Google Scholar 

  50. Bannikov GA, Karelina TV, Collier IE, Marmer BL, Goldberg GI: Substrate binding of gelatinase B induces its enzymatic activity in the presence of intact propeptide. J Biol Chem 277: 16022–16027, 2002

    Google Scholar 

  51. Toth M, Fridman R: Assessment of gelatinases by gelatin zymography. In: S. A. Brooks, U. Schumacher eds. Metastasis Research Protocols, Vol. 1. Totowa, Humana Press, New Jersey, 2001, pp 163–174

    Google Scholar 

  52. Gaudin P, Berthier S, Barro C, Zaoui P, Morel F: Proteolytic potential of human neutrophil membranes. Eur J Cell Biol 72: 345–351, 1997

    Google Scholar 

  53. Olson MW, Toth M, Gervasi DC, Sado Y, Ninomiya Y, Fridman R: High affinity binding of latent matrix metalloproteinase-9 to the alpha2(IV) chain of collagen IV. J Biol Chem 273: 10672–10681, 1998

    Google Scholar 

  54. Partridge CA, Phillips PG, Niedbala MJ, Jeffrey JJ: Localization and activation of type IV collagenase/gelatinase at endothelial focal contacts. Am J Physiol 272: L813–822, 1997

    Google Scholar 

  55. Nguyen M, Arkell J, Jackson CJ: Active and tissue inhibitor of matrix metalloproteinase-free gelatinase B accumulates within human microvascular endothelial vesicles. J Biol Chem 273: 5400–5404, 1998

    Google Scholar 

  56. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V: Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicleassociated components by endothelial cells. Am J Pathol 160: 673–680, 2002

    Google Scholar 

  57. Makela M, Salo T, Larjava H: MMP-9 from TNF alphastimulated keratinocytes binds to cell membranes and type I collagen: A cause for extended matrix degradation in inflammation? Biochem Biophys Res Commun 253: 325–335, 1998

    Google Scholar 

  58. Mira E, Manes S, Lacalle RA, Marquez G, Martinez AC: Insulin-like growth factor I-triggered cell migration and invasion are mediated by matrix metalloproteinase-9. Endocrinology 140: 1657–1664, 1999

    Google Scholar 

  59. Zucker S, Moll UM, Lysik RM, DiMassimo EI, Stetler-Stevenson WG, Liotta LA, Schwedes JW: Extraction of Cell surface association of matrix metalloproteinase-9 (gelatinase B) 165 type-IV collagenase/gelatinase from plasma membranes of human cancer cells. Int J Cancer 45: 1137–1142, 1990

    Google Scholar 

  60. Ellerbroek SM, Halbleib JM, Benavidez M, Warmka JK, Wattenberg EV, Stack MS, Hudson LG: Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res 61: 1855–1861, 2001

    Google Scholar 

  61. Festuccia C, Angelucci A, Gravina GL, Villanova I, Teti A, Albini A, Bologna M, Abini A: Osteoblast-derived TGFbeta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int J Cancer 85: 407–415, 2000

    Google Scholar 

  62. Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S, Mignatti P: Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. Embo J 16: 2319–2332, 1997

    Google Scholar 

  63. Ginestra A, Monea S, Seghezzi G, Dolo V, Nagase H, Mignatti P, Vittorelli ML: Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J Biol Chem 272: 17216–17222, 1997

    Google Scholar 

  64. Yu Q, Stamenkovic I: Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13: 35–48, 1999

    Google Scholar 

  65. Visscher DW, Hoyhtya M, Ottosen SK, Liang CM, Sarkar FH, Crissman JD, Fridman R: Enhanced expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) in the stroma of breast carcinomas correlates with tumor recurrence. Int J Cancer 59: 339–344, 1994

    Google Scholar 

  66. Karelina TV, Hruza GJ, Goldberg GI, Eisen AZ: Localization of 92-kDa type IV collagenase in human skin tumors: comparison with normal human fetal and adult skin. J Invest Dermatol 100: 159–165, 1993

    Google Scholar 

  67. Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H, Birembaut P, Tournier JM: Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146: 517–529, 1999

    Google Scholar 

  68. Toth M, Sado Y, Ninomiya Y, Fridman R: Biosynthesis of alpha2(IV) and alpha1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9. J Cell Physiol 180: 131–139, 1999

    Google Scholar 

  69. Roeb E, Schleinkofer K, Kernebeck T, Potsch S, Jansen B, Behrmann I, Matern S, Grotzinger J: The MMP-9 hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem 2002

  70. Bourguignon LY, Gunja-Smith Z, Iida N, Zhu HB, Young LJ, Muller WJ, Cardiff RD: CD44v(3,8–10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol 176: 206–215, 1998

    Google Scholar 

  71. Goodison S, Urquidi V, Tarin D: CD44 cell adhesion molecules. Mol Pathol 52: 189–196, 1999

    Google Scholar 

  72. Overall CM, Wrana JL, Sodek J: Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 264: 1860–1869, 1989

    Google Scholar 

  73. Herz J, Strickland DK: LRP: A multifunctional scavenger and signaling receptor. J Clin Invest 108: 779–784, 2001

    Google Scholar 

  74. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 95: 13221–13226, 1998

    Google Scholar 

  75. Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, Nishimura S, Imamura Y, Kitayama H, Alexander DB, Ide C, Horan TP, Arakawa T, Yoshida H, Nishikawa S, Itoh Y, Seiki M, Itohara S, Takahashi C, Noda M: The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107: 789–800, 2001

    Google Scholar 

  76. Hahn-Dantona E, Ruiz JF, Bornstein P, Strickland DK: The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem 276: 15498–15503, 2001

    Google Scholar 

  77. Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP: Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann NY Acad Sci 878: 372–387, 1999

    Google Scholar 

  78. Mori H, Tomari T, Koshikawa N, Kajita M, Itoy Y, Sato H, Tojo H, Yana I, Sciki M: CD44 directs membrane-type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin-like domain. EMBO J 21: 3949–3959, 2002.

    Google Scholar 

  79. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, Kitaura Y, Takai S, Sasahara RM, Horimoto A, Ikawa Y, Ratzkin BJ, Arakawa T, Noda M: Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 95: 13221–13226, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Fridman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridman, R., Toth, M., Chvyrkova, I. et al. Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastasis Rev 22, 153–166 (2003). https://doi.org/10.1023/A:1023091214123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023091214123

Navigation