Skip to main content
Log in

Molecular Conduction: Paradigms and Possibilities

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We discuss the factors that determine the overall shape and magnitude of the current-voltage (I-V) characteristics of a variety of molecular conductors sandwiched between two metallic contacts. We analyze the individual influences of the contact geometry, the molecular chemistry, the electrostatics of the environment, and charging on molecular conduction. Current conduction depends sensitively on the experimental geometry, as well as on the theoretical model for the molecule and the contacts. Computing molecular I-V characteristics will thus require theoretical understanding on several fronts, in particular, in the scheme for calculating the molecular energy levels, as well as on the position of the contact Fermi energy relative to those levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aviram A. and Ratner M.A. 1974. Chem. Phys. Lett. 29: 274.

    Google Scholar 

  • Banin U., Cao Y., Katz D., and Mello O. 1995. Nature 400: 542.

    Google Scholar 

  • Baranger H.U. and Wilkins J.W. 1984. Phys. Rev. B 30: 7349.

    Google Scholar 

  • Brandbyge M., Mozos J.-L., Ordejon P., Taylor J., and Stokbro K. 2002. Phys. Rev. B 65: 165401.

    Google Scholar 

  • Camillone N., Chidsey C.E.D., Liu G.Y., and Scoles G. 1993. J. Phys. Chem. 98: 3503.

    Google Scholar 

  • Chen B. and Metzger J.M. 1999. J. Phys. Chem. B 103: 4447.

    Google Scholar 

  • Chen J., Reed M.A., Rawlett A.M., and Tour J.M. 1999. Science 286: 1550.

    Google Scholar 

  • Collier C.P., Wong E.W., Belohradsky M., Raymo F.M., Stoddart J.F., Kuekes P.J., Williams R.S., and Heath J.R. 1999. Science 285: 391.

    Google Scholar 

  • Cui X.D., Primak A., Zarate X., Tomfohr J., Sankey O.F., Moore A.L., Moore T.A., Gust D., Harris G., and Lindsay S.M. 2001. Science 294: 571.

    Google Scholar 

  • Cuniberti G., Fagas G., and Richter K. 2002. Chem. Phys. 281: 465.

    Google Scholar 

  • Damle P.S., Ghosh A.W., and Datta S. 2001. Phys. Rev. B Rapid Comms. 64: 201403 R.

    Google Scholar 

  • Damle P.S., Ghosh A.W., and Datta S. 2002. Chem. Phys. 281: 171, In: Special Issue on Processes in Molecular Wires, H¨anggi P., Ratner M., and Yaliraki S. (Eds.).

    Google Scholar 

  • Damle P.S., Ghosh A.W., and Datta S. in press. In Molecular Electronics, Reed M.A. (Ed.).

  • Damle P., Rakshit T., Paulsson M., and Datta S. 2002. Preprint. cond-mat/0206328.

  • Datta S. 1995. Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Derosa P.A. and Seminario J.M. 2001. J. Phys. Chem. B 105: 471.

    Google Scholar 

  • Dhirani A., Lin P.-H., Guyot-Sionnest P., Zehner R.W., and Sita L.R. 1997. J. Chem. Phys. 106: 5249.

    Google Scholar 

  • Di Ventra M., Pantelides S.T., and Lang N.D. 2000a. Phys. Rev. Lett. 84: 979.

    Google Scholar 

  • Di Ventra M., Pantelides S.T., and Lang N.D. 2000b. Appl. Phys. Lett. 76: 3448.

    Google Scholar 

  • Emberly E.G. and Kirczenow G. 1998. Phys. Rev. B 58: 10911.

    Google Scholar 

  • Emberly E.G. and Kirczenow G. 2001. Phys. Rev. B 64: 235412.

    Google Scholar 

  • Gaudioso J., Lauhon L.J., and Ho W. 2000. Phys. Rev. Lett. 85: 1918.

    Google Scholar 

  • Ghosh A.W., Rakshit T., and Datta S. 2002. Preprint.condmat/ 0212166.

  • Ghosh A.W., Zahid F., Damle P.S., and Datta S. 2002. Preprint. cond-mat/0202519.

  • Ghosh A.W., Zahid F., Datta S., and Birge R.R. 2002. Chem. Phys. 281: 225. In: Special Issue on Processes in Molecular Wires. Hänggi P., Ratner M., and Yaliraki S. (Eds.).

  • Hall L.E., Reimers J.R., Hush N.S., and Silverbrook K. 2000. J. Chem. Phys. 112: 1510.

    Google Scholar 

  • Hoffman R. 1963. J. Chem. Phys. 39: 1937.

    Google Scholar 

  • Hong S., Reifenberger R., Tian W., Datta S., Henderson J., and Kubiak C.P. 2000. Superlattices and Microstructures 28: 289.

    Google Scholar 

  • Janes D. Private Communications.

  • Kergueris C., Bourgois J.-P., Palacin S., Esteve D., Urbina C., Magoga M., and Joachim C. 1999. Phys. Rev. B 59: 12505.

    Google Scholar 

  • Lake R. and Datta S. 1992. Phys. Rev. B 45: 6670.

    Google Scholar 

  • Lang N. and Avouris P. 2000. Phys. Rev. Lett. 84: 358.

    Google Scholar 

  • Larsen N.B., Biebuyck H., Delamarche E., and Michel B. 1997. J. Am. Chem. Soc. 119: 3107.

    Google Scholar 

  • Lepselter M.P. and Sze S.M. 1968. Proc. IEEE 56: 1400.

    Google Scholar 

  • Li X.-Q. and Yan Y. 2001. Appl. Phys. Lett. 79: 2190.

    Google Scholar 

  • Liang A., Ghosh A.W., and Datta S, unpublished.

  • Liang W.J., Shores M.P., Bockrath M., Long J.R., and Park H. 2002. Nature 417: 725.

    Google Scholar 

  • Lundstrom M. and Ren Z. 2002. IEEE Trans. Electron Devices 49: 133.

    Google Scholar 

  • Mujica V., Roitberg A., and Ratner M. 2000. J. Chem. Phys. 112: 6834.

    Google Scholar 

  • Ness H. and Fisher A.J. 1999. Phys. Rev. Lett. 83: 452.

    Google Scholar 

  • Nitzan A., Galperin M., Ingold G., and Grabert H. 2002a. Preprint. cond-mat/0207124.

  • Nitzan A., Galperin M., Ingold G., and Grabert H. 2002b. Preprint. cond-mat/0209091.

  • Ohnishi H., Kondo Y., and Takayanagi K. 1998. Nature (London) 395: 780.

    Google Scholar 

  • Palacios J.J., Pérez-Jiménez A.J., Louis E., and Vergés J.A. 2001. Phys. Rev. B 64: 115411.

    Google Scholar 

  • Palacios J.J., Pérez-Jiménez A.J., Louis E., SanFabián E., and Vergés J.A. 2002. Phys. Rev. B 66: 035322.

    Google Scholar 

  • Park H., Park J., Kim A.K.L., Anderson E.H., Alivisatos A.P., and McEuen P.L. 2000. Nature 407: 57.

    Google Scholar 

  • Park J., Pasupathy A.N., Goldsmith J.I., Chang C., Yaish Y., Petta J.R., Rinkoski M., Sethna J.P., Abru Òa H.D., McEuen P.L., and Ralph D.C. 2002. Nature 417: 722.

    Google Scholar 

  • Paulsson M. 2000. Ph.D. Thesis, Linköping University.

  • Paulsson M. and Stafström S. 2001. Phys. Rev. B 64: 035416.

    Google Scholar 

  • Paulsson M., Zahid F., and Datta S. In: Nanoscience, Engineering and Technology Handbook. Goddard W., Brenner D., Lyshevski S., and Iafrate G. (Eds.). CRC Press, Boca Raton, FL.

  • Porath D., Bezryadin A., de Vries S., and Dekker C. 2000. Nature 403: 635.

    Google Scholar 

  • Reed M.A., Zhou C., Muller C.J., Burgin T.P., and Tour J.M. 1997. Science 278: 252.

    Google Scholar 

  • Reichert J., Ochs R., Beckmann D., Weber H.B., Mayor M., and Löhneysen H.v. 2002. Phys. Rev. Lett. 88: 176804.

    Google Scholar 

  • Rucker J.R., Wang C., and Carney P.S. 1994. Appl. Phys. Lett. 65: 618.

    Google Scholar 

  • Samanta M. 1999. Master's Thesis, Purdue University.

  • Sautet P. and Joachim C. 1988. Phys. Rev. B 38: 12238.

    Google Scholar 

  • Schlegel H.B. et al. 1998. Gaussian 98, Revision A.7. Gaussian, Inc., Pittsburgh, PA.

    Google Scholar 

  • Selberherr S. 1984. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, New York.

    Google Scholar 

  • Spicer W.E. and Green A.M. 1993. J. Vac. Sci. Technol. B 11: 1347.

    Google Scholar 

  • Taylor J., Guo H., and Wang J. 2001. Phys. Rev. B 63: 245407.

    Google Scholar 

  • Tian W., Datta S., Hong S., Reifenberger R., Henderson J.I., and Kubiak C.P. 1998. J. Chem. Phys. 109: 2874.

    Google Scholar 

  • Tung R.T. 1993. J. Vac. Sci. Technol. B 11: 1546.

    Google Scholar 

  • Tung R.T. 2001. Mat. Sci. Eng. Rep. 35: 1.

    Google Scholar 

  • Venugopal R., Ren Z., Lundstrom M.S., and Jovanovic D. 2002. J. Appl. Phys. 92: 3730.

    Google Scholar 

  • Weber H.B., Reichert J., Weigand F., Ochs R., Beckmann D., Mayor M., Ahlrichs R., and Löhneysen H.v. 2002. Chem. Phys. 281: 113. In: Special Issue on Processes in Molecular Wires, Hénggi P., Ratner M., and Yaliraki S. (Eds.).

  • Xue Y. 2000. Ph.D. Thesis, Purdue University, USA.

    Google Scholar 

  • Yaliraki S.N. and Ratner M.A. 1998. J. Chem. Phys. 109: 5036.

    Google Scholar 

  • Zahid F., Paulsson M., and Datta S. in press. In: Morkoc H. (Ed.), Advanced Semiconductor and Organic Nano Techniques, Academic Press. Also described on Huckel-IV2.0 on the nanoHUB, http://www.nanohub.purdue.edu.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A., Datta, S. Molecular Conduction: Paradigms and Possibilities. Journal of Computational Electronics 1, 515–525 (2002). https://doi.org/10.1023/A:1022961608941

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022961608941

Navigation