Skip to main content
Log in

Neurotrophic Factor Effects on Oxidative Stress–Induced Neuronal Death

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurotrophic factors have been shown to potentiate necrotic neuronal death in cortical cultures. In this study we characterized the death induced by various oxidative insults and tested the effects of neurotrophic factors on that death. Treatment with fibroblast growth factor-2, neurotrophin-4, or insulin-like growth factor-1 potentiated neuronal cell death induced by iron-citrate (Fe) or buthionine sulfoximine (BSO), but not ethacrynic acid (EA). Neuronal death induced by each insult was blocked by the free radical scavenger, trolox. An analysis of the death indicated that Fe and BSO induced necrotic cell death, while EA induced apoptotic cell death. BSO and EA caused decreased cellular glutathione levels, whereas Fe had no effect on glutathione levels. Neurotrophic factors had no effect on the changes in glutathione. The results indicate that oxidative insults can induce either apoptotic or necrotic death and that the effects of neurotrophic factors are dependent on the type of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Mattson, M. P. 1997. Neuroprotective signal transduction: Relevance to stroke. Neurosci. Biobehav. Rev. 21:193–206.

    Google Scholar 

  2. Thorne, R. G. and Frey, W. H. 2nd. 2001. Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharmacokinet. 40:907–946.

    Google Scholar 

  3. Cheng, B. and Mattson, M. P. 1994. Tumor necrosis factors protect against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153.

    Google Scholar 

  4. Cheng, B. and Mattson, M. P. 1994. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 640:56–67.

    Google Scholar 

  5. Kerr, J. F., Wyllie, A. H., and Currie, A. R. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257.

    Google Scholar 

  6. Behrens, M. M., Strasser, U., Lobner, D., and Dugan, L. L. 1999. Neurotrophin mediated potentiation of neuronal injury. Micro. Res. Tech. 45:276–284.

    Google Scholar 

  7. Koh, J. Y., Gwag, B. J., Lobner, D., and Choi, D. W. 1995. Potentiated necrosis of cultured cortical neurons by neurotrophins. Science 268:573–575.

    Google Scholar 

  8. Du, C., Hu, R., Csernansky, C. A., Hsu, C. Y., and Choi, D. W. 1996. Very delayed infarction after mild focal cerebral ischemia: A role for apoptosis? J. Cereb. Blood Flow Metab. 16:195–201.

    Google Scholar 

  9. Linnik, M. D., Zobrist, R. H., and Hatfield, M. D. 1993. Evidence supporting a role for programmed cell death in focal cerebral ischemia. Stroke 24:2002–2009.

    Google Scholar 

  10. Gwag, B. J., Lobner, D., Koh, J. Y., Wie, M. B., and Choi, D. W. 1995. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 68:615–619.

    Google Scholar 

  11. Gwag, B. J., Koh, J. Y., DeMaro, J. A., Ying, H. S., Jacquin, M., and Choi, D. W. 1997. Slowly triggered excitotoxicity occurs by necrosis in cortical cultures. Neuroscience 77:393–401.

    Google Scholar 

  12. Dessi, F., Charriaut-Marlangue, C., and Ben-Ar, Y. 1992. Anisomycin and cycloheximide protect cerebellar neurons in culture from anoxia. Brain Res. 581:323–326.

    Google Scholar 

  13. Dreyer, E. B., Zhang, D., and Lipton, S. A. 1995. Transcriptional or translational inhibition blocks low dose NMDA-mediated cell death. Neuroreport 6:942–944.

    Google Scholar 

  14. Ratan, R. R., Murphy, T. H., and Baraban, J. M. 1994. Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.

    Google Scholar 

  15. Mailly, F., Marin, P., Israel, M., Glowinski, J., and Premont, J. 1999. Increase in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis. J. Neurochem. 73:1181–1188.

    Google Scholar 

  16. Guidetti, C., Paracchini, S., Lucchins, S., Cambieri, M., and Marzatico, F. 2001. Prevention of neuronal cell damage induced by oxidative stress invitro: Effect of different Gingko biloba extracts. J. Pharm. Pharmacol. 53:387–392.

    Google Scholar 

  17. Noh, J. S. and Gwag, B. J. 1997. Attenuation of oxidative neuronal necrosis by a dopamine D1 agonist in mouse cortical cell cultures. Exp. Neurol. 146:604–608.

    Google Scholar 

  18. Hill, I. E., Murray, C., Richard, J., Rasquinha, I., and MacManus, J. P. 2000. Despite the internucleosomal cleavage of DNA, reactive oxygen species do not produce other markers of apoptosis in cultured neurons. Exp. Neurol. 162:73–88.

    Google Scholar 

  19. Gwag, B. J., Koh, J. Y., Chen, M. M., Dugan, L. L., Behrens, M. M., Lobner, D., and Choi, D. W. 1995a. BDNF and IGF-I potentiates free radical-mediated injury in cortical cell cultures. Neuroreport 7:93–96.

    Google Scholar 

  20. Lobner, D. and Ali C. 2002. Mechanisms of FGF-2 and NT-4 potentiation of necrotic neuronal death. Brain Res. 954:42–50.

    Google Scholar 

  21. Rose, K., Goldberg, M. P., and Choi, D. W. 1993. Cytotoxicity in murine cortical cell culture. Pages 46-60, in Tyson, C. A. and Frazier, J. M. (eds.), In Vitro Biological Methods: Methods in Toxicology, Academic Press, San Diego.

    Google Scholar 

  22. Koh, J. Y. and Choi, D. W. 1987. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 20:83–90.

    Google Scholar 

  23. Baker, M. A., Cerniglia, G. J., and Zaman, A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal. Biochem. 190:360–365.

    Google Scholar 

  24. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.

    Google Scholar 

  25. Griffith, O. W., Anderson, M. E., and Meister, A. 1979. Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-N-propyl-homocysteine sulfoximine), a selective inhibitor of gamma-glutamylcysteine synthetase. J. Biol. Chem. 254:1205–1210.

    Google Scholar 

  26. Shen, H., Ranganathan, S., Kuzmich, S., and Tew, K. D. 1995. Influence of ethacrynic acid on glutathione S-transferase pi transcript and protein half-lives in human colon cancer cells. Biochem. Pharmacol. 50:1233–1238.

    Google Scholar 

  27. Gottron, F. J., Ying, H. S., and Choi, D. W. 1997. Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell. Neurosci. 9:159–169.

    Google Scholar 

  28. Lobner D. 2000. Comparison of the LDH and MTT assays for quantifying cell death: Validity for neuronal apoptosis? J. Neurosci. Meth. 96:147–152.

    Google Scholar 

  29. Koh, J. Y., Wie, W. B., Gwag, B. J., Sensi, S. L., Canzoniero, L. M. T., Demar, J., Csernansky, C., and Choi, D. W. 1995. Staurosporine-induced neuronal apoptosis. Exper. Neurol. 135:153–159.

    Google Scholar 

  30. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, and Lipton, S. A. 1995. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 92:7162–7166.

    Google Scholar 

  31. Jia, W. W., Wang, Y., Qiang, D., Tufaro, F., Remington, R., and Cynader, M. 1996. A bcl-2 expressing viral vector protects cortical neurons from excitotoxicity even when administered several hours after the toxic insult. Brain Res. Mol. Brain Res. 42:350–353.

    Google Scholar 

  32. Larm, J. A., Cheung, N. S., and Beart, P. M. 1997. Apoptosis induced via AMPA-selective glutamate receptors in cultured murine cortical neurons. J. Neurochem. 69:617–622.

    Google Scholar 

  33. Cheng, B., Goodman, Y., Begley, J. G., and Mattson, M. P. 1994. Neurotrophin-4/5 protects hippocampal and cortical neurons against energy deprivation-and excitatory amino acid-induced injury. Brain Res. 650:331–335.

    Google Scholar 

  34. Cheng, B. and Mattson, M. P. 1991. NGF and FGF-2 protect rat and human central neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7:1031–1041.

    Google Scholar 

  35. Cheng, B. and Mattson, M. P. 1992. Glucose deprivation elicits neurofibillary tangle-like antigenic changes in hippocampal neurons: Prevention by NGF and FGF-2. Exp. Neurol. 117:114–123.

    Google Scholar 

  36. Cheng, B. and Mattson, M. P. 1992. IGF-I and IGF-II protect cultured hippocampal and septal neurons against calcium-mediated hypoglycemic damage. J. Neurosci. 12:1558–1566.

    Google Scholar 

  37. Cheng, B. and Mattson, M. P. 1995. PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: Evidence for induction of antioxidant pathways. J. Neurosci. 15:7095–7104.

    Google Scholar 

  38. Mattson, M. P. and Cheng, B. 1993. Growth factors protect neurons against excitotoxic/ischemic damage by stabilizing calcium homeostasis. Stroke 24:1136–1140.

    Google Scholar 

  39. Glazner, G. W. and Mattson, M. P. 2000. Differential effects of BDNF, ADNF9, and TNFalpha on levels of NMDA receptor subunits, calcium homeostasis, and neuronal vulnerability to excitotoxicity. Exp. Neurol. 161:442–452.

    Google Scholar 

  40. Spina, M. B., Squinto, S. P., Miller, J., Lindsay, R. M., and Hyman, C. 1992. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system. J. Neurochem. 59:99–106.

    Google Scholar 

  41. Pan, Z. and Perez-Polo, R. 1993. Role of nerve growth factor in oxidant homeostasis: Glutathione metabolism. J. Neurochem. 61:1713–1721.

    Google Scholar 

  42. Zhang, Y., Tatsuno, T., Carney, J. M., and Mattson, M. P. 1993. Basic FGF, NGF, and IGF's protect hippocampal and cortical neurons against iron-induced degeneration. J. Cereb. Blood Flow Metab. 13:378–388.

    Google Scholar 

  43. Estevez, A. G., Radi, R., Barbeito, L., Shin, J. T., Thompson, J. A., and Beckman, J. S. 1995. Peroxynitrite-induced cytotoxicity in PC12 cells: Evidence for an apoptotic mechanism differentially modulated by neurotrophic factors. J. Neurochem. 65:1543–1550.

    Google Scholar 

  44. Maiese, K. and Boccone, L. 1995. Neuroprotection by peptide growth factors against anoxia and nitric oxide toxicity requires modulation of protein kinase C. J. Cereb. Blood Flow Metab. 15:440–449.

    Google Scholar 

  45. Yamagata, T., Satoh, T., Ishikawa, Y., Nakatani, A., Yamada, M., Ikeuchi, T., and Hatanaka, H. 1999. Brain-derived neurotrophic factor prevents superoxide anion-induced death of PC12h cells stably expressing TrkB receptor via modulation of reactive oxygen species. Neurosci. Res. 35:9–17.

    Google Scholar 

  46. Ratan, R. R., Lee, P. J., and Baraban, J. M. 1996. Serum deprivation inhibits glutathione depletion-induced death in embryonic cortical neurons: Evidence against oxidative stress as a final common mediator of neuronal apoptosis. Neurochem. Int. 29:153–157.

    Google Scholar 

  47. Park, E. C., Jou, I., and Gwag, B. J. 1998. Nerve growth factor potentiates the oxidative necrosis of striatal cholinergic neurons. Neuroreport 9:687–690.

    Google Scholar 

  48. Ishikawa, Y., Ikeuchi, T., and Hatanaka, H. 2000. Brain-derived neurotrophic factor accelerates nitric oxide donor-induced apoptosis of cultured cortical neurons. J. Neurochem. 75:494–502.

    Google Scholar 

  49. Martin L. J. 2001. Neuronal cell death in nervous system development, disease, and injury. Int. J. Mol. Med. 7:455–478.

    Google Scholar 

  50. Ratan, R. R., Murphy, T. H., and Baraban, J. M. 1994. Macro-molecular synthesis inhibitors prevent oxidative stress-induced apoptosis in embryonic cortical neurons by shunting cysteine from protein synthesis to glutathione. J. Neurosci. 7:4385–4392.

    Google Scholar 

  51. Seyfried, J., Soldner, F., Schulz, J. B., Klockgether, T., Kovar, K. A., and Wullner, U. 1999. Differential effects of L-buthionine sulfoximine and ethacrynic acid on glutathione levels and mitochondrial function in PC12 cells. Neurosci. Lett. 264:1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Lobner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobner, D., Golner, S. & Hjelmhaug, J. Neurotrophic Factor Effects on Oxidative Stress–Induced Neuronal Death. Neurochem Res 28, 749–756 (2003). https://doi.org/10.1023/A:1022817918651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022817918651

Navigation