Skip to main content
Log in

In Vitro Evaluation of Nebulization Properties, Antimicrobial Activity, and Regional Airway Surface Liquid Concentration of Liposomal Polymyxin B Sulfate

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To manipulate the activity of polymyxin B sulfate (PXB sulfate) by encapsulation in liposomes derived from appropriately selected surfactants that exhibit optimum entrapment and aerosol delivery of encapsulated PXB sulfate.

Methods. A combination of phospholipid (DMPG) and nonionic surfactants (Span 20 + Tween 80) was selected to encapsulate PXB sulfate. The nebulization properties were evaluated by nebulizing the liposomal dispersions with Pari LC Star nebulizers. The in vitro antibacterial activities of the original and nebulized liposomal formulations were evaluated against Pseudomonas aeruginosa (ATCC 27853) strains by broth microdilution, and their minimum inhibitory concentrations (MICs) were compared with those of free PXB sulfate and colistin methanesulfonate. Measurements of the aerosol properties during nebulization were used as input for a mathematical model of airway surface liquid in the lung of an average adult, to estimate the airway surface liquid concentration of the deposited liposomal PXB sulfate.

Results. The selected combination of surfactants showed maximum nebulization efficiency without compromising liposomal integrity during nebulization. PXB sulfate was added at a concentration of 10 mg/ml, and a molar ratio of PXB sulfate to dimyristoyl phosphatidylglycerol (DMPG) (sodium salt) of 1:5 was required to achieve 100% entrapment of PXB sulfate and no leakage on nebulization. Another formulation comprising half the concentrations of the optimized nonionic surfactants and DMPG was prepared to achieve a balance between the toxicity and efficacy after nebulization of encapsulated PXB sulfate. The in vitro antibacterial activities against Pseudomonas aeruginosa indicated that the activity of PXB sulfate could be manipulated by appropriate concentrations of the selected surfactants to achieve activity equivalent to that of colistin methanesulfonate, which is known to be less toxic than unencapsulated PXB sulfate. The estimated airway surface liquid concentrations of the deposited liposomal PXB sulfate reveal that the MIC of the nebulized liposomal PXB sulfate can be achieved over most of the tracheobronchial region, using a jet nebulizer with a volume fill of 2.5 ml or more.

Conclusions. It was established from this study that the encapsulation of PXB sulfate in liposomes reduces its activity against P. aeruginosa strains. Concentrations of PXB sulfate deposited in the tracheobroncial region, predicted using a mathematical model, were above the measured MICs except in the case of very high mucus production rate and low mucus velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. B. May, D. Shinabarger, R. Maharaj, J. Kato, L. Chu, and J. D. DeVault. Alginate synthesis by Pseudomonas aeruginosa: a key pathogenic factor in chronic pulmonary infections of cystic fibrosis patient. Clin. Microbiol. Rev. 4:191-206 (1991).

    Google Scholar 

  2. B. van Klingeren. Antibiotic resistance in Pseudomonas aeruginosa, Haemophilus influenza and Staphylococcus aureus. Chest 94:S103-S109 (1988).

    Google Scholar 

  3. D. J. Touw, R. W. Brimicombe, M. E. Hodson, H. G. M. Heijerman, and W. Bakker. Inhalation of antibiotics in cystic fibrosis. Eur. Respir. J. 8:1594-1604 (1995).

    Google Scholar 

  4. D. R. Storm, K. S. Rosenthal, and P. E. Swnason. Polymyxin and related peptide antibiotics. Ann. Rev. Biochem. 46:723-763 (1977).

    Google Scholar 

  5. T. Jensen, S. S. Pedersen, S. Garne, C. Heilmann, N. Hoiby, and C. Koch. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. J. Antimicrob. Chemother. 19:831-838 (1987).

    Google Scholar 

  6. M. E. Evans, D. J. Feola, and R. P. Rapp. Polymyxin B sulfate and colistin: Old antibiotics for emerging multiresistant gram negative bacteria. Ann. Pharmacother. 33:960-967 (1999).

    Google Scholar 

  7. H. Schreier, R. J. Gonalez-Rothi, and A. A Stecenko. Pulmonary delivery of liposomes. J. Control. Release 24:209-223 (1993).

    Google Scholar 

  8. W. A. Craig and C. M. Kunin. Dynamics of binding and release of the polymyxin antibiotics by tissues. J. Pharmacol. Exp. Ther. 184:757-765 (1973).

    Google Scholar 

  9. S. M. McAllister, H. O. Alper, Z. Teitelbaum, and D. B. Bennette. Do interactions with phospholipids contribute to the prolonged retention of polypeptides within the lung? Adv. Drug Deliv. Rev. 19:89-110 (1996).

    Google Scholar 

  10. J. N. Weinstein and L. D. Leserman. Liposomes as drug carriers in cancer chemotherapy. Pharmacol. Ther. 24:207-233 (1984).

    Google Scholar 

  11. G. G#x00AEoriadis. Liposomes as Drug Carriers. J. Wiley & Sons, London, 1988.

    Google Scholar 

  12. S. M. McAllister, H. O. Alper, and M. R. W. Brown. Antimicrobial properties of liposomal polymyxin B. J. Antimicrob. Chemother. 43:203-210 (1999).

    Google Scholar 

  13. F. MorÉn and S. P. Newman. Aerosol dosage forms and formulations. In: F. MorÉn, M. B. Dolovich, and M. T. Newhouse (Eds.), Aerosols in Medicines. Elsevier, New York, 1993, p.321.

    Google Scholar 

  14. W. H. Finlay. The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic Press, Oxford, 2001.

    Google Scholar 

  15. C. Beaulac, S. Sachetelli, and J. Lagace. Aerosolization of low phase transition temperature liposomal tobramycin as a dry powder in an animal model of chronic pulmonary infection caused by Pseudomonas aeruginosa. J. Drug Target. 7:33-41 (1999).

    Google Scholar 

  16. J. Krzek, M. Starek, A. Kwiecien, and W. Rzeszutko. Simultaneous identification and quantitative determination of neomycin sulfate, polymixin B sulfate, zinc bacytracin and methyl and propyl hydroxybenzoates in ophthalmic ointment by TLC. J. Pharm. Biomed. Anal. 24:629-636 (2001).

    Google Scholar 

  17. W. H. Finlay, C. F. Lange, M. King, and D. P. Spreet. Lung delivery of aerosolized dextran. Am. J. Respir. Crit. Care Med. 161:91-97 (2000).

    Google Scholar 

  18. National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 2nd ed.: Approved Standard M7-A2, NCCLS, Villanova, Pennsylvania, 1990.

    Google Scholar 

  19. R. M. Prokop, W. H. Finlay, and K. W. Stapleton. An in vitro technique for calculating the #x00AEional dosages of drugs delivered by an ultrasonic nebulizer. J. Aerosol Sci. 26:847-860 (1995).

    Google Scholar 

  20. J. G. Widdicombe. Airways surface liquid: Concepts and measurements. In D. F. Rogers and M. I. Lethem (eds). Airway Mucus: Basic Mechanism and Clinical Perspectives, Birkhauser, Basel, 1997, pp. 1-17.

    Google Scholar 

  21. C. G. Phillips, S. R. Kaye, and R. C. Schroter. A diameter-based reconstruction of the breathing pattern of the human bron#x03A7;al tree. Part I. Description and application. Resp. Physiol. 98:193-217 (1994).

    Google Scholar 

  22. B. Haefeli-Bleuer and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat. Rec. 220: 401-414 (1988).

    Google Scholar 

  23. D. B. Yeates, J. M. Sturgess, S. R. Kahi, H. Levison, and N. Aspin. Mucociliary transport in trachea of patients with cystic fibrosis. Arch. Dis. Childhood 51:28-33 (1975).

    Google Scholar 

  24. B. Oberwaldner, J. C. Evans, and M. S. Zach. Forced expirations against a variable resistance: A new chest physiotherapy method in cystic fibrosis. Pediatr. Pulmonol. 2:358-367 (1986).

    Google Scholar 

  25. C. F. Lange, R. E. W. Hancock, J. Samuel, and W. H. Finlay. In vitro aerosol delivery and #x00AEional airway surface liquid concentration of a liposomal cationic peptide. J. Pharm. Sci. 90:1647-1657 (2001).

    Google Scholar 

  26. T. R. Desai, J. P. Wong, R. E. W. Hancock, and W. H. Finlay. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. J. Pharm. Sci. 91:482-491 (2002).

    Google Scholar 

  27. S. B. Kulkarni, G. V. Betagiri, and M. Singh. Factors affecting microencapsulation of drug in liposomes. J. Microencapsul. 12:229-246 (1995).

    Google Scholar 

  28. A. Omri, M. Ravaoarinoro, and M. Poisson. Incorporation, release and in-vitro antibacterial activity of liposomal aminoglycosides against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 36:631-639 (1995).

    Google Scholar 

  29. P. Diot, P. F. Dequin, B. Rivoire, F. Gagnadoux, F. Faurisson, E. Diot, E. Boissinot, A. Le Pape, L. Palmer, and E. Lemarie. Aerosols and anti-infectious agents. J. Aerosol Med. 14:55-64 (2001).

    Google Scholar 

  30. S. L. Katz, S. L. Ho, and A. L. Coates. Nebulizer choice for inhaled colistin treatment in cystic fibrosis. Chest 119:250-255 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren H. Finlay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, T.R., Tyrrell, G.J., Ng, T. et al. In Vitro Evaluation of Nebulization Properties, Antimicrobial Activity, and Regional Airway Surface Liquid Concentration of Liposomal Polymyxin B Sulfate. Pharm Res 20, 442–447 (2003). https://doi.org/10.1023/A:1022664406840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022664406840

Navigation