Skip to main content
Log in

Suppression of Glial Tumor Growth by Expression of Glial Fibrillary Acidic Protein

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We examined the effect of expression of glial fibrillary acidic protein (GFAP) on the tumor growth of astrocytoma in vivo. When rat astrocytoma C6 cells were injected subcutaneously in athymic mice, the cells produced tumors that grew rapidly. The tumor growth of C6 cells transfected with GFAP cDNA was significantly reduced compared to that of control NeoC6 cells transfected only with the neomycin resistant gene. After implantation of C6 cells transfected with mutated GFAP cDNA at the phosphorylation sites, the tumor growth was suppressed similar to that of the wild GFAP transfectants. To determine whether the cell growth suppression by GFAP is specific for astroglial cells, we assessed the effect of GFAP on the cell growth of an L cell of fibroblast origin in vitro. By GFAP cDNA transfection, L cells showed morphological changes, but the cell growth was not reduced. These results suggest that GFAP is a critical regulator of the tumor growth of astrocytoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Sensenbrenner, M., Devilliers, G., Boch, E., and Porte, A. 1980. Biochemical and ultrastructural studies of cultured rat astroglial cells. Differentiation. 17:51–61.

    PubMed  Google Scholar 

  2. Jacque, C. M., Keyas, M., Poreau, A., Raoul, M., Collier, P., Racadot, J., and Baumann, N. 1979. GFA and S-100 protein levels as an index for malignancy in human gliomas and neurinomas. J. Natl. Cancer Inst. 62:479–483.

    PubMed  Google Scholar 

  3. Duffy, P.E., Huang, Y. Y., and Rapport, M. M. 1982. The relationship of GFAP to the shape, motility, and differentiation of human astrocytoma cells. Exp. Cell Res. 139:145–157.

    PubMed  Google Scholar 

  4. Toda, M., Miura, M., Asou, H., Toya, S., and Uyemura, K. 1994. Cell growth suppression of astrocytoma C6 cells by GFAP cDNA transfection. J. Neurochem. 63:1975–1978.

    PubMed  Google Scholar 

  5. Harris, H. 1985. Suppression of malignancy in hybrid cells: the mechanism. J. Cell Sci. 79:83–94.

    PubMed  Google Scholar 

  6. Inagaki, M., Gonda, Y., Matsuyama, M., Nishizawa, K., Nishi, Y., and Sato, C. 1988. Intermediate filament reconstitution in vitro. J. Biol. Chem. 263:5970–5978.

    PubMed  Google Scholar 

  7. Inagaki, M., Nishi, Y., Nishizawa, K., Matsuyama, M., and Sato, C. 1987. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature. 328:649–652.

    PubMed  Google Scholar 

  8. Kosako, H., Amano, M., Yanagida, M., Tanabe, K., Nishi, Y., Kaibuchi, K., and Inagaki, M. 1998. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J. Biol. Chem. 272:10333–10336.

    Google Scholar 

  9. Zoller, M., and Smith, M. 1987. Oligonucleotide-directed mutagenesis: A simple method using two oligonucleotide primers and single-stranded DNA template. Methods Enzymol. 154:329–350.

    PubMed  Google Scholar 

  10. Kume, T. U., Takada, S., and Obinata, M. 1988. Probability that the commitment of murine erythroleukemia cell differentiation is determined by the c-myc level. J. Mol. Biol. 202:779–786.

    PubMed  Google Scholar 

  11. Graham, F. L., and Van der Eb, A. 1993. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52:456–467.

    Google Scholar 

  12. Toda, M., Asou, H., Miura, M., Toya, S., and Uyemura, K. 1994. GFAP transfected cells produce laminin, leading to neurite outgrowth promotion. NeuroReport. 5:1969–1972.

    PubMed  Google Scholar 

  13. Chin, S. S. M., and Liem, R. K. H. 1989. Expression of rat neurofilament proteins NF-L and NF-M in transfected non-neuronal cells. Eur. J. Cell Biol. 50:475–490.

    PubMed  Google Scholar 

  14. Cooper, H. L., Bhattacharya, B., and Bassin, R. H. 1987. Suppression of synthesis and utilization of tropomyosin in mouse and rat fibroblasts by transforming growth factor α: A pathway in oncogene action. Cancer Res. 47:4493–4500.

    PubMed  Google Scholar 

  15. Chan, D., Goate, A., and Puck, T. T. 1989. Involvement of vimentin in the reverse transformation reaction. Proc. Natl. Acad. Sci. USA. 86:2747–2751.

    PubMed  Google Scholar 

  16. Pollack, R., Osborn, M., and Weber, K. 1975. Pattern of organization of actin and myosin in normal and transformed cells. Proc. Natl. Acad. Sci. USA. 72:994–998.

    PubMed  Google Scholar 

  17. Rastinejad, F., Conboy, M. J., Rando, T. A., and Blau, H. M. 1993. Tumor suppression by RNA from the 3′ untranslated region of α-tropomyosin. Cell. 75:1107–1117.

    PubMed  Google Scholar 

  18. Rodríguez Fernández, J. L., Geiger, B., Salomon, D., Sabanay, I., Zöller, M., and Ben-Ze'ev, A. 1992. Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA. J. Cell. Biol. 119:427–438.

    PubMed  Google Scholar 

  19. Prasad, G. L., Fuldner, R. A., and Cooper, H. L. 1993. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc. Natl. Acad. Sci. USA. 90:7039–7043.

    PubMed  Google Scholar 

  20. Glück, U., Kwiatkowski, D. J., and Ben-Ze'ev, A. 1993. Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with α-actinin cNDA. Proc. Natl. Acad. Sci. USA. 90:383–387.

    PubMed  Google Scholar 

  21. Eiden, M. V., MacArthur, L., and Okayama, H. 1991. Suppression of the chemically transformed phenotype of BHK cells by a human cDNA. Mol. Cell Biol. 11:5321–5329.

    PubMed  Google Scholar 

  22. Weinstein, D. E., Schelanski, M., and Liem, R. K. H. 1991. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J. Cell. Biol. 112:1205–1213.

    PubMed  Google Scholar 

  23. Rutka, J. T., Hubbard, S. L., Fukuyama, K., Matsuzawa, K., Dirks, P. B., and Becker, L. E. 1994. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res. 1994:3267–3272.

    Google Scholar 

  24. Rutka, J. T., and Smith, S. L. 1993. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res. 53:3624–3631.

    PubMed  Google Scholar 

  25. Reeves, S. A., Helman, L. J., Allison, A., and Israel, M. A. 1989. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA. 86:5178–5182.

    PubMed  Google Scholar 

  26. Evans, R. M. 1988. The intermediate-filament proteins vimentin and desmin are phosphorylated in specific domains. Eur. J. Cell Biol. 46:152–160.

    PubMed  Google Scholar 

  27. Chou, Y.-H., Rosevear, E., and Goldman, R. D. 1989. Phosphorylation and disassembly of intermediate filaments in mitotic cells. Proc. Natl. Acad. Sci. USA. 86:1885–1889.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, M., Miura, M., Asou, H. et al. Suppression of Glial Tumor Growth by Expression of Glial Fibrillary Acidic Protein. Neurochem Res 24, 339–343 (1999). https://doi.org/10.1023/A:1022538810581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022538810581

Navigation