Skip to main content
Log in

Structural Transition in the Micellar Assembly: A Fluorescence Study

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Structural transition can be induced in charged micelles by increasing the ionic strength of the medium. Thus, spherical micelles of sodium dodecyl sulfate (SDS) that exist in water at concentrations higher than the critical micelle concentration assume an elongated rod-like structure in the presence of an increased electrolyte concentration. This is known as sphere-to-rod transition. In this paper, we characterize the change in organization and dynamics that is accompanied by the salt-induced sphere-to-rod transition in SDS micelles using wavelength-selective fluorescence and other steady-state and time-resolved fluorescence parameters. Since the change in micelle organization during such structural transition may not be limited to one region of the micelle, we have selectively introduced fluorophores in two distinct regions of the micelle. We used two probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) and 25-[N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-methyl]amino]-27-norcholesterol (NBD-cholesterol), for monitoring the two regions of the micelle. NBD-PE monitors the interfacial region of the micellar assembly, while NBD-cholesterol acts as a reporter for the deeper regions of the micellar interior. Our results show that wavelength-selective fluorescence, in combination with other fluorescence parameters, offers a powerful way to monitor structural transitions induced in charged micelles. These results could be significant to changes in membrane morphology observed under certain physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Helenius and K. Simons (1975) Biochim. Biophys. Acta 415, 29–79.

    PubMed  Google Scholar 

  2. A. Helenius, D. R. McCaslin, E. Fries, and C. Tanford (1979) Methods Enzymol. 56, 734–749.

    PubMed  Google Scholar 

  3. L. M. Hjelmeland (1980) Proc. Natl. Acad. Sci. USA 77, 6368–6370.

    PubMed  Google Scholar 

  4. D. Lichtenberg, R. J. Robson, and E. A. Dennis (1983) Biochim. Biophys. Acta 737, 285–304.

    PubMed  Google Scholar 

  5. J. M. Neugebauer (1990) Methods Enzymol. 182, 239–253.

    PubMed  Google Scholar 

  6. A. Chattopadhyay and K. G. Harikumar (1996) FEBS Lett. 391, 199–202.

    Article  PubMed  Google Scholar 

  7. C. Tanford (1978) Science 200, 1012–1018.

    PubMed  Google Scholar 

  8. J. N. Israelachvili, S. Marcelja, and R. G. Horn (1980) Q. Rev. Biophys. 13, 121–200.

    PubMed  Google Scholar 

  9. C. Tanford (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Interscience, New York.

    Google Scholar 

  10. C. Tanford (1987) Biochem. Soc. Trans. 15, 1S–7S.

    Google Scholar 

  11. J. C. Franklin, J. F. Ellena, S. Jayasinghe, L. P. Kelsh, and D. S. Cafiso (1994) Biochemistry 33, 4036–4045.

    PubMed  Google Scholar 

  12. S. Improta, A. Pastore, S. Mammi, and E. Peggion (1994) Biopolymers 34, 773–782.

    PubMed  Google Scholar 

  13. V. J. Lenz, M. Federwisch, H.-G. Gattner, D. Brandenburg, H. Hocker, U. Hassiepen, and A. Wollner (1995) Biochemistry 34, 6130–6141.

    PubMed  Google Scholar 

  14. G. L. Mattice, R. E. Koeppe, L. L. Providence, and O. S. Andersen (1995) Biochemistry 34, 6827–6837.

    PubMed  Google Scholar 

  15. N. A. Mazer, G. B. Benedek, and M. C. Carey (1976) J. Phys. Chem. 80, 1075–1086.

    Google Scholar 

  16. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey (1978) J. Phys. Chem. 82, 1375–1378.

    Google Scholar 

  17. S. Hayashi and S. Ikeda (1980) J. Phys. Chem. 84, 744–751.

    Google Scholar 

  18. F. M. Menger (1979) Acc. Chem. Res. 12, 111–117.

    Google Scholar 

  19. B. Lindman and H. Wennerstrom (1982) in K. L. Mittal and E. J. Fendler (Eds.), Solution Behavior of Surfactants: Theoretical and Applied Aspects, Plenum Press, New York, Vol. 1, pp. 3–25.

    Google Scholar 

  20. M. Shinitzky, A.-C. Dianoux, C. Gitler, and G. Weber (1971) Biochemistry 10, 2106–2113.

    PubMed  Google Scholar 

  21. K. Kalyanasundaram and J. K. Thomas (1977) J. Phys. Chem. 81, 2176–2180.

    Google Scholar 

  22. P. Mukerjee and J. R. Cardinal (1978) J. Phys. Chem. 82, 1620–1627.

    Google Scholar 

  23. R. Leung and D. O. Shah (1986) J. Colloid Interface Sci. 113, 484–499.

    Article  Google Scholar 

  24. H. Nery, O. Soderman, D. Canet, H. Walderhaug, and B. Lindman (1986) J. Phys. Chem. 90, 5802–5808.

    Google Scholar 

  25. G. Saroja and A. Samanta (1995) Chem. Phys. Lett. 246, 506–512.

    Article  Google Scholar 

  26. N. Sarkar, A. Datta, S. Das, and K. Bhattacharyya (1996) J. Phys. Chem. 100, 15483–15486.

    Article  Google Scholar 

  27. N. C. Maiti, M. M. G. Krishna, P. J. Britto, and N. Periasamy (1997) J. Phys. Chem. B 101, 11051–11060.

    Article  Google Scholar 

  28. S. S. Rawat, S. Mukherjee, and A. Chattopadhyay (1997) J. Phys. Chem. B 101, 1922–1929.

    Article  Google Scholar 

  29. D. W. R. Gruen (1985) J. Phys. Chem. 89, 153–163.

    Google Scholar 

  30. A. D. MacKerell (1995) J. Phys. Chem. 99, 1846–1855.

    Google Scholar 

  31. K. N. Ganesh, P. Mitra, and D. Balasubramanian (1982) J. Phys. Chem. 86, 4291–4293.

    Google Scholar 

  32. J. Shobha and D. Balasubramanian (1986) J. Phys. Chem. 90, 2800–2802.

    Google Scholar 

  33. J. Shobha, V. Srinivas, and D. Balasubramanian (1989) J. Phys. Chem. 93, 17–20.

    Google Scholar 

  34. K. Kalyanasundaram, M. Gratzel, and J. K. Thomas (1975) J. Am. Chem. Soc. 97, 3915–3922.

    Google Scholar 

  35. S. Ikeda, S. Hayashi, and T. Imae (1981) J. Phys. Chem. 85, 106–112.

    Google Scholar 

  36. P. J. Missel, N. A. Mazer, M. C. Carey, and G. B. Benedek (1982) in K. L. Mittal and E. J. Fendler (Eds.), Solution Behavior of Surfactants: Theoretical and Applied Aspects, Plenum Press, New York, Vol. 1, pp. 373–388.

    Google Scholar 

  37. S. Ikeda (1984) in K. L. Mittal and E. J. Fendler (Eds.), Surfactants in Solution, Plenum Press, New York, Vol. 2, pp. 825–840.

    Google Scholar 

  38. G. Porte and J. Appell (1984) in K. L. Mittal and E. J. Fendler (Eds.), Surfactants in Solution, Plenum Press, New York, Vol. 2, pp. 805–823.

    Google Scholar 

  39. P. Mukerjee (1965) J. Phys. Chem. 69, 4038–4040.

    Google Scholar 

  40. J. A. Reynolds and C. Tanford (1970) Proc. Natl. Acad. Sci. USA 66, 1002–1007.

    PubMed  Google Scholar 

  41. A. Chattopadhyay and E. London (1984) Anal. Biochem. 139, 408–412.

    PubMed  Google Scholar 

  42. K. Kalyanasundaram and J. K. Thomas (1976). J. Phys. Chem. 80, 1462–1473.

    Google Scholar 

  43. J. Shobha and D. Balasubramanian (1987) Proc. Indian Acad. Sci. (Chem. Sci.) 98, 469–478.

    Google Scholar 

  44. A. Chattopadhyay (1991) Biophys. J. 59, 191a.

    Google Scholar 

  45. A. Chattopadhyay and S. Mukherjee (1993) Biochemistry 32, 3804–3811.

    PubMed  Google Scholar 

  46. A. Chattopadhyay and R. Rukmini (1993) FEBS Lett. 335, 341–344.

    Article  PubMed  Google Scholar 

  47. S. Mukherjee and A. Chattopadhyay (1994) Biochemistry 33, 5089–5097.

    PubMed  Google Scholar 

  48. S. Mukherjee, A. Chattopadhyay, A. Samanta, and T. Soujanya (1994) J. Phys. Chem. 98, 2809–2812.

    Google Scholar 

  49. S. Guha, S. S. Rawat, A. Chattopadhyay, and B. Bhattacharyya (1996) Biochemistry 35, 13426–13433.

    Article  PubMed  Google Scholar 

  50. A. Chattopadhyay, S. Mukherjee, R. Rukmini, S. S. Rawat, and S. Sudha (1997) Biophys. J. 73, 839–849.

    PubMed  Google Scholar 

  51. A. K. Ghosh, R. Rukmini, and A. Chattopadhyay (1997) Biochemistry 36, 14291–14305.

    Article  PubMed  Google Scholar 

  52. S. Mukherjee and A. Chattopadhyay (1995) J. Fluoresc. 5, 237–246.

    Google Scholar 

  53. A. P. Demchenko (1988) Trends Biochem. Sci. 13, 374–377.

    Article  PubMed  Google Scholar 

  54. D. Haussinger (1996) Biochem. J. 313, 697–710.

    PubMed  Google Scholar 

  55. C. Ho and C. D. Stubbs (1992) Biophys. J. 63, 897–902.

    PubMed  Google Scholar 

  56. W. B. Fischer, S. Sonar, T. Marti, H. G. Khorana, and K. J. Rothschild (1994) Biochemistry 33, 12757–12762.

    PubMed  Google Scholar 

  57. H. Kandori, Y. Yamazaki, J. Sasaki, R. Needleman, J. K. Lanyi, and A. Maeda (1995) J. Am. Chem. Soc. 117, 2118–2119.

    Google Scholar 

  58. R. Sankararamakrishnan and M. S. P. Sansom (1995) FEBS Lett. 377, 377–382.

    Article  PubMed  Google Scholar 

  59. A. Chattopadhyay (1990) Chem. Phys. Lipids 53, 1–15.

    Article  PubMed  Google Scholar 

  60. S. Mazeres, V. Schram, J.-F. Tocanne, and A. Lopez (1996) Biophys. J. 71, 327–335.

    PubMed  Google Scholar 

  61. A. Chattopadhyay and E. London (1987) Biochemistry 26, 39–45.

    PubMed  Google Scholar 

  62. A. Chattopadhyay and E. London (1988) Biochim. Biophys. Acta 938, 24–34.

    PubMed  Google Scholar 

  63. R. E. Pagano and O. C. Martin (1988) Biochemistry 27, 4439–4445.

    PubMed  Google Scholar 

  64. B. Mitra and G. G. Hammes (1990) Biochemistry 29, 9879–9884.

    PubMed  Google Scholar 

  65. D. E. Wolf, A. P. Winiski, A. E. Ting, K. M. Bocian, and R. E. Pagano (1992) Biochemistry 31, 2865–2873.

    PubMed  Google Scholar 

  66. F. S. Abrams and E. London (1993) Biochemistry 32, 10826–10831.

    PubMed  Google Scholar 

  67. S. Mukherjee and A. Chattopadhyay (1996) Biochemistry 35, 1311–1322.

    Article  PubMed  Google Scholar 

  68. J. C. Dittmer and R. L. Lester (1964) J. Lipid Res. 5, 126–127.

    Google Scholar 

  69. C. W. F. McClare (1971) Anal. Biochem. 39, 527–530.

    PubMed  Google Scholar 

  70. R. F. Chen and R. L. Bowman (1965) Science 147, 729–732.

    PubMed  Google Scholar 

  71. J. R. Lakowicz (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  72. P. R. Bevington (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  73. D. V. O'Connor and D. Phillips (1984) Time-Correlated Single Photon Counting, Academic Press, London, pp. 180–189.

    Google Scholar 

  74. R. A. Lampert, L. A. Chewter, D. Phillips, D. V. O'Connor, A. J. Roberts, and S. R. Meech (1983) Anal. Chem. 55, 68–73.

    Google Scholar 

  75. A. Grinvald and I. Z. Steinberg (1974) Anal. Biochem. 59, 583–598.

    PubMed  Google Scholar 

  76. J. R. Knutson, J. M. Beechem, and L. Brand (1983) Chem. Phys. Lett. 102, 501–507.

    Article  Google Scholar 

  77. J. M. Beechem (1989) Chem. Phys. Lipids 50, 237–251.

    Article  PubMed  Google Scholar 

  78. J. M. Beechem (1992) Methods Enzymol. 210, 37–54.

    PubMed  Google Scholar 

  79. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy: Principles, Plenum Press, New York, Vol. 2, pp. 241–305.

    Google Scholar 

  80. S. Lin and W. S. Struve (1991) Photochem. Photobiol. 54, 361–365.

    PubMed  Google Scholar 

  81. S. Fery-Forgues, J. P. Fayet, and A. Lopez (1993) J. Photochem. Photobiol. 70, 229–243.

    Article  Google Scholar 

  82. R. Homan and M. Eisenberg (1985) Biochim. Biophys. Acta 812, 485–492.

    PubMed  Google Scholar 

  83. S. J. Morris, D. Bradley, and R. Blumenthal (1985) Biochim. Biophys. Acta 818, 365–372.

    PubMed  Google Scholar 

  84. T. Arvinte, A. Cudd, and K. Hildenbrand (1986) Biochim. Biophys. Acta 860, 215–228.

    Google Scholar 

  85. M. Rasia and A. Bollini (1998) Biochim. Biophys. Acta 1372, 198–204.

    PubMed  Google Scholar 

  86. E. J. Luna and A. L. Hitt (1992) Science 258, 955–963.

    PubMed  Google Scholar 

  87. F. A. Kuypers, B. Roelofsen, W. Berendsen, J. A. F. Op den Kamp, and L. L. M. van Deenen (1984) J. Cell Biol. 99, 2260–2267.

    Article  PubMed  Google Scholar 

  88. L. Backman, J. B. Jonasson, and P. Horstedt (1998) Mol. Membr. Biol. 15, 27–32.

    PubMed  Google Scholar 

  89. M. M. Gedde and W. H. Huestis (1997) Biophys. J. 72, 1220–1233.

    PubMed  Google Scholar 

  90. E. Farge and P. F. Devaux (1992) Biophys. J. 61, 347–357.

    PubMed  Google Scholar 

  91. K. Rajarathnam, J. Hochman, M. Schindler, and S. Ferguson-Miller. (1989) Biochemistry 28, 3168–3176.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawat, S.S., Chattopadhyay, A. Structural Transition in the Micellar Assembly: A Fluorescence Study. Journal of Fluorescence 9, 233–244 (1999). https://doi.org/10.1023/A:1022511801958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022511801958

Navigation