Skip to main content
Log in

Dietary Saturated Fatty Acids and Brain Function

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The degree to which fatty acids modulate brain function beyond periods of rapid brain growth is poorly understood. Nevertheless, recent evidence suggests that dietary fatty acid composition influences numerous behaviors including body temperature regulation, pain sensitivity, feeding behavior including macronutrient selection, and cognitive performance. Importantly, alterations are observed in the absence of essential fatty acid (EFA) deficiency, beyond periods of rapid brain development, and at levels similar to those consumed by the North American population. Data suggest that the content of saturated fatty acids (SFAs), and not that of the EFAs, may be the important component of dietary fat mediating macronutrient selection and cognition under these experimental conditions. Yet, a direct role of SFAs in modulating brain functions has not been elucidated. A discussion of potential mechanisms which may directly involve the central nervous system, or may indirectly influence central processes via peripheral pathway(s) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bourre, J. M., Bonneil, M., Clement, M., Dumont, O., Durand, G., Lafont, H., Nalbone, G., and Piciotti, M. 1993. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot. Essent Fatty Acids 48:5–15.

    Google Scholar 

  2. Greenwood, C. E., McGee, C. D., and Dyer, J. R. 1989. Influence of dietary fat on brain membrane phospholipid fatty acid composition and neuronal function in mature rats. Nutrition 5:278–281.

    Google Scholar 

  3. Neuringer, M., Anderson, G. J., and Connor, W. E. 1988. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annual Rev. Nutr. 8:517–541.

    Google Scholar 

  4. Wainwright, P. E. 1992. Do essential fatty acids play a role in brain and behavioral development? Neurosci. Biobehav. Rev. 16:193–205.

    Google Scholar 

  5. Wainwright, P. E. in press. Essential fatty acids and behavior: Is there a role for the eicosanoids? In Mostofsky, D. and Yehuda, S. (eds.), Fatty Acids: Biochemistry and Behavior, Humana Press Inc., Totowa, NJ.

  6. Bourre, J. M., Dumont, O. S., Piciotti, M. J., Pascal, G. A., and Durand, G. A. 1992. Dietary alpha-linolenic acid deficiency in adult rats for 7 months does not alter brain docosahexaenoic acid content, in contrast to liver, heart and testes. Biochim. Biophys. Acta. 1124:119–122.

    Google Scholar 

  7. Dyer, J. R., and Greenwood, C. E. 1991. Neural 22-carbon fatty acids in the weanling rat respond rapidly and specifically to a range of dietary linoleic and a-linolenic fatty acid ratios. J. Neurochem. 56:1921–1931.

    Google Scholar 

  8. Wurtman, R. J., Hefti, F., and Melamed, E. 1981. Precursor control of neurotransmitter synthesis. Pharmacol. Rev. 32:315–335.

    Google Scholar 

  9. Yehuda, S., Leprohon-Greenwood, C. E., Dixon, L. M., and Coscina, D. V. 1986. Effects of dietary fat on pain threshold, thermoregulation and motor activity in rats. Pharmacol. Biochem. Behav. 24:1775–1777.

    Google Scholar 

  10. Yehuda, S., and Carasso, R. L. 1987. Effects of dietary fats on learning, pain threshold, thermoregulation and motor activity in rats: Interaction with the length of feeding period. Inter. J. Neurosci. 32:919–925.

    Google Scholar 

  11. Crane, S. B., and Greenwood, C. E. 1987. Dietary fat source influences neuronal mitochondrial monoamine oxidase activity and macronutrient selection in rats. Pharmacol. Biochem. Behav. 27:1–6.

    Google Scholar 

  12. McGee, C. D., and Greenwood, C. E. 1989. Effects of dietary fatty acid composition on macronutrient selection and synaptosomal fatty acid composition in rats. J. Nutr. 119:1561–1568.

    Google Scholar 

  13. Mullen, B. J., and Martin, R. J. 1990. Macronutrient selection in rats: effect of fat type and level. J. Nutr. 120:1418–1425.

    Google Scholar 

  14. Mullen, B. J., and Martin, R. J. 1991. Macronutrient selection, dietary fat and brain tryptophan uptake. FASEB J. 5:A1315.

    Google Scholar 

  15. Mullen, B. J., and Martin, R. J. 1992. The effect of dietary fat on diet selection may involve central serotonin. Am. J. Physiol. 263:R559-R563.

    Google Scholar 

  16. Grossman, B. M., White, B. D., Edwards, G. L., and Martin, R. J. 1994. Vagotomy and mercaptoacetate influence the effect of dietary fat on macronutrient selection by rats. J. Nutr. 124:804–809.

    Google Scholar 

  17. Coscina, D. V., Yehuda, S., Dixon, L. M., Kish, S. J., and Leprohon-Greenwood, C. E. 1986. Learning is improved by a soybean oil diet in rats. Life Sci. 38:1789–1794.

    Google Scholar 

  18. Greenwood, C. E., and Winocur, G. 1990. Learning and memory impairment in rats fed a high saturated fat diet. Behav. Neural Biol. 53:74–87.

    Google Scholar 

  19. Olton, D. S. 1983. Memory functions and the hippocampus. Pages 335–373, in Seifert, W. (ed.), Neurobiology of the Hippocampus, Academic Press, New York.

    Google Scholar 

  20. Kesner, R. P. 1986. Neurobiological views of memory. Pages 399–438, in Martinez, J. C., and Kesner, R. P. (eds.), Learning and Memory: A Biological View, Academic Press, New York.

    Google Scholar 

  21. Winocur, G., and Moscovitch, M. 1990. Hippocampal and prefrontal cortex contributions to learning and memory: Analysis of lesion and aging effects on maze learning in rats. Behav. Neurosci. 104:544–551.

    Google Scholar 

  22. McGee, C. D., and Greenwood, C. E. 1990. Protein and carbohydrate selection respond to changes in dietary saturated fatty acids but not to changes in essential fatty acids. Life Sci. 47:67–76.

    Google Scholar 

  23. Yehuda, S., and Carasso, R. L. 1993. Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: Determination of the optimal w3-to-w6 ratio. Proc. National Academy Sci. 90:10345–10349.

    Google Scholar 

  24. Bourre, J. M., Piciotti, M., Dumont, O., Pascal, G., and Durand, G. 1990. Dietary linoleic acid and polyunsaturated fatty acids in rat brain and other organs. Minimal requirements of linoleic acid. Lipids 25:465–472.

    Google Scholar 

  25. Bourre, J. M., Dumont, O., Pascal, G., and Durand, G. 1993. Dietary a-linolenic acid at 1.3 g/kg maintains maximal docosahexaneoic acid concentration in brain, heart and liver of adult rats. J. Nutr. 123:1313–1319.

    Google Scholar 

  26. Greenwood, C. E., and Winocur, G. 1996. Cognitive impairment in rats fed high fat diets: A specific effect of saturated fatty acid intake. Behav. Neurosci. 110:451–459.

    Google Scholar 

  27. Lamptey, M. S., and Walker, B. L. 1976. A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106:86–93.

    Google Scholar 

  28. Reisbick, S., Neuringer, M., Hasnain, R., and Connor, W. E. 1994. Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol. Behav. 55:231–239.

    Google Scholar 

  29. Yamamoto, N., Hashimoto, A., Yasuhiko, T., Okuyama, H., Nomura, M., Kitajima, R., Togashi, T., and Tamai, Y. 1988. Effect of the dietary a-linolenate/linoleate balance on lipid compositions and learning ability or rats. II. Discrimination process, extinction process, and glycolipid compositions. J. Lipid Res. 29:1013–1021.

    Google Scholar 

  30. Bourre, J. M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. 1989. The effects of dietary a-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameter, resistance of poisons and performance of learning tasks in rats. J. Nutr. 119:1880–1892.

    Google Scholar 

  31. Ruthrich, H. L., Hoffmann, P., Mattheis, H., and Forster, W. 1984. Perinatal linoleate deprivation impairs learning and memory in adult rats. Behav. Neural Biol. 40:205–212.

    Google Scholar 

  32. Galli, C., Trzeciak, H. I., and Paoletti, R. 1971. Effects of dietary fatty acids on the fatty acid composition of brain ethanolamine phosphoglyceride: Reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids. Biochim. Biophys. Acta. 248:449–454.

    Google Scholar 

  33. Alling, C., Bruce, A., Karlsson, I., Sapia, O., and Svennerholm, I. 1972. Effect of maternal essential fatty acid supply on fatty acid composition of brain, liver, muscle and serum in 21-day old rats. J. Nutr. 102:773–782.

    Google Scholar 

  34. Menon, N. K., and Dhopeshwarkar, G. A. 1982. Essential fatty acid deficiency and brain development. Prog. Lipid Res. 21:309–326.

    Google Scholar 

  35. Wainwright, P. E., Huang, Y. S., Bulman-Fleming, B., Levesque, S., and McCutcheon, D. 1994. The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behav. Brain Res. 60:125–136.

    Google Scholar 

  36. Foot, M., Cruz, T. F., and Clandinin, M. T. 1982. Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Biochem. J. 208:631–640.

    Google Scholar 

  37. Foot, M., Cruz, T. F., and Clandinin, M. T. 1983. Effect of dietary lipid on synaptosomal acetylcholinesterase activity. Biochem. J. 211:507–509.

    Google Scholar 

  38. Scott, B., Lew, J., Clandinin, M. T., and Cinader, B. 1989. Dietary fat influences electric membrane properties of neurons in cell culture. 9:105–113. Cell. Molec. Neurobiol. 9:105–113.

    Google Scholar 

  39. Yamoaka, R. U., and Kito, M. 1988. Mitochondrial function in rats is affected by modification of membrane phospholipids with dietary sardine oil. J. Nutr. 118:290–296.

    Google Scholar 

  40. Dyer, J. R., and Greenwood, C. E. 1991. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time. J. Nutr. 121:1548–1553.

    Google Scholar 

  41. McGee, C. D., and Greenwood, C. E. 1990. Dietary fat-induced changes in protein and carbohydrate selection are not explained by alterations in neuronal membrane fatty acid composition. Life Sci. 47:933–944.

    Google Scholar 

  42. Kasser, T. R., Harris, R. B., and Martin, R. J. 1985. Level of satiety: fatty acid and glucose metabolism in three brain sites associated with feeding. Am. J. Physiol. 248:R447-R452.

    Google Scholar 

  43. Kasser, T. R., Deutch, A., and Martin, R. J. 1986. Uptake and utilization of metabolites in specific brain sites relative to feeding status. Physiol. Behav. 36:1161–1165.

    Google Scholar 

  44. Wang, S. W., Wang, M., Mullen-Grossman, B., and Martin, R. J. 1994. Effects of dietary fat on food intake and brain uptake and oxidation of fatty acids. Physiol. Behav. 56:517–522.

    Google Scholar 

  45. Jones, P. J. H., Pencharz, P. B., and Clandinin, M. T. 1985. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42:769–777.

    Google Scholar 

  46. Leyton, J., Drury, P. J., and Crawford, M. A. 1987. Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br. J. Nutr. 57:383–393.

    Google Scholar 

  47. Cromer, L., Koegler, F. H., and Ritter, W. 1993. 2-Mercaptoacetate and 2-deoxyglucose induce quantitatively different macronutrient appetites. 19: 1695 no. 697.3. Neurosci. Abst. 19:1695.

    Google Scholar 

  48. Leibowitz, S. F. 1986. Brain monoamines and peptides: Role in the control of eating behavior. Pharmacol. Biochem. Behav. 45:185–194.

    Google Scholar 

  49. Bray, G. A. 1992. Peptides affect the intake of specific nutrients and the sympathetic nervous system. Am. J. Clin. Nutr. 55:265S-271S.

    Google Scholar 

  50. Anderson, G. H. 1979. Control of protein and energy intake: Role of plasma amino acids and brain neurotransmitters. Can. J. Physiol. Pharmacol. 57:1043–1057.

    Google Scholar 

  51. McGee, C. D., and Greenwood, C. E. 1991. Effect of qualitative differences in dietary fat on dexfenfluramine mediated depression of food intake and serotonin metabolism. 2:79–86. J. Nutr. Biochem. 2:79–86.

    Google Scholar 

  52. Fernstrom, J. D., and Wurtman, R. J. 1971. Brain serotonin content: Increase following ingestion of carbohydrate diet. Science 174:1023–1025.

    Google Scholar 

  53. Fernstrom, J. D., and Wurtman, R. J. 1972. Elevation of plasma tryptophan by insulin in rat. Metabolism 21:337–342.

    Google Scholar 

  54. Powley, T. L., and Berthoud, H. R. 1986. Participation of the vagus and other autonomic nerves in the control of food intake. Pages 67–101, in Ritter, R. C., Ritter, S., and Barnes, C. D. (eds.), Feeding Behavior, Academic Press Inc., London.

    Google Scholar 

  55. Ritter, S., Calingasan, N. Y., Hutton, B., and Dinh, T. T. 1992. Cooperation of vagal and central neural systems in monitoring metabolic events controlling feeding behavior. Pages 249–277, in Ritter, S., Ritter, R. C., and Barnes, C. D. (eds.), Neuroanatomy and Physiology of Abdominal Vagal Afferents, CRC Press, Boca Raton, FL.

    Google Scholar 

  56. Scalfani, A., and Kramer, T. H. 1983. Dietary selection in vagotomized rats. J. Autonomic Nervous System 9:247–258.

    Google Scholar 

  57. Li, E. T. S., and Anderson, G. H. 1984. A role for vagus nerve in regulation of protein and carbohydrate intake. Am. J. Physiol. 247:E815-E821.

    Google Scholar 

  58. Storlien, L. H., Jenkins, A. B., Chisholm, D. J., Pascoe, W. S., Khouri, S., and Kraegen, E. W. 1991. Influence of dietary fat composition on development of insulin resistance in rats. Diabetes 40:280–289.

    Google Scholar 

  59. Clandinin, M. T., Cheema, S., Field, C. J., and Baracos, V. E. 1993. Dietary lipids influence insulin action. Annals New York Acad. Sci. 683:151–163.

    Google Scholar 

  60. Field, C. J., Toyomizu, M., and Clandinin, M. T. 1989. Relationship between dietary fat, adipocyte membrane composition and insulin binding in the rat. J. Nutr. 119:1483–1489.

    Google Scholar 

  61. van Amelsvoort, J. M. M., van der Beek, A., and Stam, J. J. 1986. Effects of the type of dietary fatty acid on the insulin receptor function in rat epididymal fat cells. Ann. Nutr. Metab. 30:273–280.

    Google Scholar 

  62. Field, C. J., Ryan, E. A., Thomson, A. B., and Clandinin, M. T. 1990. Diet fat composition alters membrane phospholipid composition, insulin binding, and glucose metabolism in adipocytes from control and diabetic animals. J. Biol. Chem. 265:11143–11150.

    Google Scholar 

  63. Pan, J., and Berdanier, C. D. 1991. Dietary fat saturation affects glucose metabolism without affecting insulin receptor number and affinity in adipocytes from BHE rats. J. Nutr. 121:1811–1819.

    Google Scholar 

  64. van Amelsvoort, J. M. M., van der Beek, A., Stam, J. J., and Houtsmuller, U. M. T. 1988. Dietary influence on the insulin function in the epididymal fat cell of the Wistar rat. I. Effect of type of fat. Ann. Nutr. Metab. 32:138–148.

    Google Scholar 

  65. Gradman, T. J., Laws, A., Thompson, L. W., and Reaven, G. M. 1993. Verbal learning and/or memory improves with glycemic control in older subjects with non-insulin-dependent diabetes mellitus. J. Am. Geriatrics Soc. 41:1305–1312.

    Google Scholar 

  66. Meneilly, G. S., Cheung, E., Tessier, D., Yakura, C., and Tuokko, H. 1993. The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes. J. Gerontol. 48:M117-M121.

    Google Scholar 

  67. Craft, S., Newcomer, J., Kanne, S., Dagogo-Jack, S., Cryer, P., Sheline, Y., Luby, J., Dagogo-Jack, A., and Alderson, A. 1996. Memory improvement following induced hyperinsulinemia in Alzheimer's Disease. Neurobiol. Aging. 17:123–130.

    Google Scholar 

  68. Livingstone, C., Lyall, H., and Gould, G. W. 1995. Hypothalamic GLUT 4 expression: a glucose-and insulin-sensing mechanism? Molecular. Cell. Endocrin. 107:67–70.

    Google Scholar 

  69. Brant, A. M., Jess, T. J., Milligan, G., Brown, C. M., and Gould, G. W. 1993. Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochem. Biophys. Res. Communic. 192:1297–1302.

    Google Scholar 

  70. Rayner, D. V., Thomas, M. E. A., and Trayhum, P. 1994. Glucose transporters (GLUTs 1–4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Can. J. Physiol. Pharmacol. 72:476–479.

    Google Scholar 

  71. Wozniak, M., Rydzewski, B., Baker, S. P., and Raizada, M. K. 1993. The cellular and physiological actions of insulin in the central nervous system. Neurochem. Inter. 22:1–10.

    Google Scholar 

  72. Plata-Salaman, C. R. 1991. Insulin in the cerebrospinal fluid. Neurosci. Behav. Rev. 15:243–258.

    Google Scholar 

  73. Gold, P. E. 1986. Glucose modulation of memory storage processing. Behav. Neural Biol. 45:342–349.

    Google Scholar 

  74. Stone, W. S., Rudd, R. J., and Gold, P. E. 1990. Amphetamine, epinephrine, and glucose enhancement of memory retrieval. Psychobiol. 18:227–230.

    Google Scholar 

  75. Rodriguez, W. A., Van-Ausdle, L. R., Dhanens, K., and Mondragon, A. N. 1993. Glucose modulates recently reactivated memories. Psychobiol. 21:93–100.

    Google Scholar 

  76. Messier, C., and Destrade, C. 1988. Improvement of memory for an operant response by post-training glucose in mice. Behav. Brain Res. 31:185–191.

    Google Scholar 

  77. Means, L. W., and Fernandez, T. J. 1992. Daily glucose injections facilitate performance of a win-stay water-escape working memory task in mice. Behav. Neurosci. 106:345–350.

    Google Scholar 

  78. Kopf, S. R., Opezzo, J. W., and Baratti, C. M. 1993. Glucose enhancement of memory is not state-dependent. Behav. Neural Biol. 60:192–195.

    Google Scholar 

  79. Benton, D. 1990. The impact of increasing blood glucose on psychological functioning. Biol. Psychol. 30:13–19.

    Google Scholar 

  80. Benton, D., and Owens, D. S. 1993. Blood glucose and human memory. Psychopharmacol. 113:83–88.

    Google Scholar 

  81. Benton, D., Owens, D. S., and Parker, P. Y. 1994. Blood glucose influences memory and attention in young adults. Neuropsychologia 32:595–607.

    Google Scholar 

  82. Lee, M. K., Graham, S. N., and Gold, P. E. 1988. Memory enhancement with posttraining intraventricular glucose injections in rats. Behav. Neurosci. 102:591–595.

    Google Scholar 

  83. Gold, P. E., and Stone, W. S. 1988. Neuroendocrine effects on memory in aged rodents and humans. Special issue: Experimental models of age-related memory dysfunction and neurodegeneration. Neurobiol. Aging 9:709–717.

    Google Scholar 

  84. Wenk, G. L. 1989. An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmacol. 99:431–438.

    Google Scholar 

  85. Gonder-Frederick, L. A., Hall, J. L., Vogt, J., Cox, D. L., Green, J., and Gold, P. E. 1987. Memory enhancement in elderly humans: Effects of glucose ingestion. Physiol. Behav. 41:503–504.

    Google Scholar 

  86. Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J., and Gold, P. E. 1989. Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia 27:1129–1138.

    Google Scholar 

  87. Manning, C. A., Ragozzino, M. E., and Gold, P. E. 1993. Glucose enhancement of memory in patients with probable senile dementia of the Alzheimer's type. Neurobiol. Aging 14:523–528.

    Google Scholar 

  88. Winocur, G. 1995. Glucose-enhanced performance by aged rats on a test of conditional discrimination learning. Psychobiol. 23:270–276.

    Google Scholar 

  89. Messier, C., and Gagnon, M. 1996. Glucose regulation and cognitive functions: relation to Alzheimer's disease and diabetes. Behav. Brain Res. 75:1–11.

    Google Scholar 

  90. Kaplan, R. J., Anderson, G. H., and Greenwood, C. E. 1996. Effect of dietary saturated fatty acid chain length on insulin, glucose tolerance, and macronutrient selection. Soc. Neurosci. Abst. 22:452.

    Google Scholar 

  91. United States Department of Agriculture. 1979. Composition of Foods: Fats and Oils, Handbook No. 8–4.

  92. Peck, M. D. 1994. Interaction of lipids with immune function I: Biochemical effects of dietary lipids on plasma membranes. J. Nutr. Biochem 5:466–478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, R.J., Greenwood, C.E. Dietary Saturated Fatty Acids and Brain Function. Neurochem Res 23, 615–626 (1998). https://doi.org/10.1023/A:1022478503367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022478503367

Navigation