Skip to main content
Log in

Equations of State for Technical Applications. III. Results for Polar Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New functional forms have been developed for multiparameter equations of state for non- and weakly polar fluids and for polar fluids. The resulting functional forms, which were established with an optimization algorithm which considers data sets for different fluids simultaneously, are suitable as a basis for equations of state for a broad variety of fluids. The functional forms were designed to fulfil typical demands of advanced technical application with regard to the achieved accuracy. They are numerically very stable and their substance-specific coefficients can easily be fitted to restricted data sets. In this way, a fast extension of the group of fluids for which accurate empirical equations of state are available is now possible. This article deals with the results found for the polar fluids CFC-11 (trichlorofluoromethane), CFC-12 (dichlorodifluoromethane), HCFC-22 (chlorodifluoromethane), HFC-32 (difluoromethane), CFC-113 (1,1,2-trichlorotrifluoroethane), HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane), HFC-125 (pentafluoroethane), HFC-134a (1,1,1,2-tetrafluoroethane), HFC-143a (1,1,1-trifluoroethane), HFC-152a (1,1-difluoroethane), carbon dioxide, and ammonia. The substance-specific parameters of the new equations of state are given as well as statistical and graphical comparisons with experimental data. General features of the new class of equations of state such as their extrapolation behavior or their numerical stability and results for non- and weakly polar fluids have been discussed in preceding articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Span, H.-J. Collmann, and W. Wagner, Int. J. Thermophys. 19:491(1998).

    Google Scholar 

  2. R. Span and W. Wagner, Int. J. Thermophys. 24:1(2003).

    Google Scholar 

  3. R. Span and W. Wagner, Int. J. Thermophys. 24:41(2003).

    Google Scholar 

  4. R. Span, Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000).

    Google Scholar 

  5. V. Marx, A. Pruß, and W. Wagner, Neue Zustandsgleichungen für R-12, R-22, R-11 und R-113, Beschreibung des thermodynamischen Zustandsverhalten bei Temperaturen bis 525 K und Drücken bis 200 MPa, Fortschr.-Ber. VDI, Reihe 6, 57(1992).

    Google Scholar 

  6. W. Wagner, V. Marx, and A. Pruß, Rev. Int. Froid 16:373(1993)

    Google Scholar 

  7. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273(1997).

    Google Scholar 

  8. S. L. Outcalt and M. O. McLinden, Int. J. Thermophys. 16:79(1995).

    Google Scholar 

  9. B. A. Younglove and M. O. McLinden, J. Phys. Chem. Ref. Data 23:731(1994).

    Google Scholar 

  10. S. Tanikawa, Y. Kabata, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:381(1990).

    Google Scholar 

  11. M. Fukushima, N. Watanabe, and T. Kamimura, Trans. JAR 7:85(1990).

    Google Scholar 

  12. C. C. Piao and M. Noguchi, J. Phys. Chem. Ref. Data 27:775(1998).

    Google Scholar 

  13. R. Tillner-Roth and H. D. Baehr, J. Phys. Chem. Ref. Data 23:657(1994).

    Google Scholar 

  14. J. Li, R. Tillner-Roth, H. Sato, and K. Watanabe, Int. J. Thermophys. 20:1639(1999).

    Google Scholar 

  15. J. Li, R. Tillner-Roth, H. Sato, and K. Watanabe, An Equation of State for 1,1,1-Trifluoroethane (R-143a), in W. M. Haynes, ed., Proc. of the 13th Symp. on Thermophys. Prop., Preprint Volume (Boulder, Colorado, 1997).

  16. R. Tillner-Roth, Int. J. Thermophys. 16:91(1995).

    Google Scholar 

  17. Y. Higashi, M. Ashizawa, Y. Kabata, T. Majima, M. Uematsu, and K. Watanabe, JSME Int. J. 30:1106(1987).

    Google Scholar 

  18. R. Span and W. Wagner, J. Phys. Chem. Ref. Data 25:1509(1996).

    Google Scholar 

  19. R. Tillner-Roth, F. Harms-Watzenberg, and H. D. Baehr, Eine neue Fundamental-gleichung für Ammoniak, DKV-Tagungsber. 20 (DKV, Stuttgart, 1993).

    Google Scholar 

  20. H. Preston-Thomas, Metrologia 12:7(1990).

    Google Scholar 

  21. R. L. Rusby, J. Chem. Thermodyn. 23:1153(1990).

    Google Scholar 

  22. T. B. Coplen, J. Phys. Chem. Ref. Data 26:1239(1997).

    Google Scholar 

  23. E. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 17:1795(1988).

    Google Scholar 

  24. P. J. Mohr and B. N. Taylor, J. Phys. Chem. Ref. Data 28:1713(1999).

    Google Scholar 

  25. R. T Jacobsen, S. G. Penoncello, and E. W. Lemmon, Fluid Phase Equil. 80:45(1992).

    Google Scholar 

  26. A. F. Benning and R. C. McHarness, Ind. Eng. Chem. 32:698(1940).

    Google Scholar 

  27. E. A. Kremenevskaya and S. L. Rivkin, Teplofiz. Svoj. Ves. Material. 8:46(1975).

    Google Scholar 

  28. S. L. Rivkin and E. A. Kremenevskaya, Thermophys. Prop. Matter Substance 8:1(1975).

    Google Scholar 

  29. V. P. Kolebev and A. M. Shaemardanov, Experimental Investigation of Refractive Index of freon-11. Deposited in VINITI, Doc.-No.: 3592-80 (1980).

  30. W. Blanke, pvT-Measurements for R-11. Private communication, PTB, Braunschweig (1988).

    Google Scholar 

  31. W. Blanke, pvT Measurements for R-12, R-11, and R-113. Private communication, PTB, Braunschweig (1989).

    Google Scholar 

  32. W. Blanke, pvT-Measurements for R-11 and R-113. Private communication, PTB, Braunschweig (1989).

    Google Scholar 

  33. W. Blanke and R. Weiß, PTB-Mitteilungen 107:115(1997).

    Google Scholar 

  34. L. Kolomov, A. K. Solov'ev, and E. P. Sheludyakov, Zh. Prikl. Mekh. Tekh. Fiz. 3:141(1968).

    Google Scholar 

  35. K. J. Meyer, Kältetechnik–Klimatisierung 21:270(1969).

    Google Scholar 

  36. M. Chavez, P. Habichayn, and R. Tsumura, J. Chem. Eng. Data 31:218(1986).

    Google Scholar 

  37. A. Lainez, P. Gopal, A. Zollweg, and W. B. Street, J. Chem. Thermodyn. 21:773(1989).

    Google Scholar 

  38. D. W. Osborne, C. S. Garner, R. N. Doescher, and D. M. Yost, J. Am. Chem. Soc. 63:3496(1941).

    Google Scholar 

  39. A. Ya. Grishkov and A. M. Sirota, Thermophys. Prop. Matter Substance 4:34(1971).

    Google Scholar 

  40. H. Wirbser, G. Bräuning, and G. Ernst, J. Chem. Thermodyn. 24:783(1992).

    Google Scholar 

  41. J. O. Hirschfelder, F. T. McClure, and I. F. Weeks, J. Chem. Phys. 10:201(1942).

    Google Scholar 

  42. L. Riedel, Z. ges. Kälteindustrie 46:197(1939).

    Google Scholar 

  43. E. A. Kremenevskaya and S. L. Rivkin, Teplofiz. Svoj. Ves. Material. 8:40(1975).

    Google Scholar 

  44. E. Fernandez-Fassnacht and F. Del Rio, J. Chem. Thermodyn. 16:1003(1984).

    Google Scholar 

  45. A. F. Benning and R. C. McHarness, Ind. Eng. Chem. 32:814(1940).

    Google Scholar 

  46. M. Kriebel and H. J. Löffler, Kältetechnik–Klimatisierung 18:34(1966).

    Google Scholar 

  47. M. Okada, M. Uematsu, and K. Watanabe, Measurements of saturated liquid density for several refrigerants, in Proc. 16th Int. Cong. Refrigeration (Int. Inst. Refrig., Paris, 1983).

    Google Scholar 

  48. M. Okada, M. Uematsu, and K. Watanabe, J. Chem. Thermodyn. 18:527(1986).

    Google Scholar 

  49. G. Händel, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24:697(1992).

    Google Scholar 

  50. S. G. Penoncello, R. T Jacobsen, and E. W. Lemmon, Fluid Phase Equil. 80:57(1992).

    Google Scholar 

  51. A. Michels, T. Wassenaar, G. J. Wolkers, Chr. Prins, and L. van der Klundert, J. Chem. Eng. Data 11:449(1966).

    Google Scholar 

  52. I. I. Perel'shtein, Thermophys. Prop. Matter Substance 2:225(1970).

    Google Scholar 

  53. K. Watanabe, T. Tanaka, and K. Oguchi, Compressibility and virial coefficients of dichlorodifluoromethane (R-12) with Burnett apparatus, in Proc. 7th Symp. Thermophys. Prop. (ASME, New York, 1977).

    Google Scholar 

  54. A. Kumagi and H. Iwasaki, J. Chem. Eng. Data 23:193(1978).

    Google Scholar 

  55. K. Oguchi, Y. Takaishi, and I. Tanishita, Trans. JSME B 50:2606(1984).

    Google Scholar 

  56. G. A. Iglesias-Silva, pvT measurements for R-12. Private communication, (Texas A&M University, College Station, 1987). Data partly published in: R. C. Castro-Gomez, G. A. Igelsias-Silva, W. R. Lau, J. C. Holste, K. N.Marsh, K. R. Hall, and P. T. Eubank, Experimental Enthalpies and Densities of Compressed Liquid Refrigerants. Paper 85-WA/HT-57, (ASME, New York, 1986).

    Google Scholar 

  57. W. Blanke, H. Häusler, and R. Weiß, PTB-Mitteilungen 98:253(1988).

    Google Scholar 

  58. W. Blanke, pvT Measurements for R-12 and R-22. Private communication, (PTB, Braunschweig, 1989).

    Google Scholar 

  59. Y. Hwang, The Constant Volume Heat Capacities of Gaseous Tetrafluoromethane, Chlorodifluoromethane, Dichlorotetrafluoroethane and Chloropenta-Fluoro-Ethane (Ph.D. Thesis, University of Michigan, Ann Arbor, 1961).

    Google Scholar 

  60. J. Woodburn, M. T. Mettrey, and B. L. Hoa, ASHRAE J. 8:74(1966).

    Google Scholar 

  61. E. P. Sheludyakov, Yu. L. Kolotov, and A. N. Solov'ev, Teplofiz. Svojstva Frenov 96 (1969).

  62. G. R. Poole and R. A. Aziz, AIChE J. 18:430(1972).

    Google Scholar 

  63. W. S. Winters, Jr. and H. Merte, Jr., J. Appl. Phys. 48:3605(1977).

    Google Scholar 

  64. A. C. Tam and W. P. Leung, Phys. Rev. Let. 53:560(1984).

    Google Scholar 

  65. J. F. Masi, J. Am. Chem. Soc. 74:4738(1952).

    Google Scholar 

  66. R. C. McHarness, B. J. Eisemann, and J. J. Martin, Refrig. Eng. 63:31(1955).

    Google Scholar 

  67. G. Ernst, Chemie-Ing.-Techn. 41:544(1969).

    Google Scholar 

  68. V. A. Gruzdev and A. I. Shumskaya, Thermophys. Prop. Matter Substance 8:108(1975).

    Google Scholar 

  69. R. C. Castro-Gomez, A Thermodynamic Total Enthalpy Flow Calorimeter: Its Application to Binary Mixtures of Chlorofluoromethanes (Ph.D. Thesis, Texas A&M University, College Station, 1987).

    Google Scholar 

  70. B. Schramm, Measurements of 2nd Virial Coefficients of R-12 and R-22, Private communication (University Heidelberg, Heidelberg, 1988).

    Google Scholar 

  71. K. Oguchi, Y. Takaishi, and I. Tanishita, Experimental study of pressure-volume-temperature relationships for dichlorodifluoromethane (R-12) in Proc. 16th Int. Congr. Refrig., Vol. 2, (Paris, 1983).

  72. W. Blanke and R. Weiß, Vapor-Pressure Measurements for R-12 and R-22. Private communication, (PTB, Braunschweig, 1990).

    Google Scholar 

  73. A. Kamei, S. W. Beyerlein, and R. T Jacobsen, Int. J. Thermophys. 16:1155(1995).

    Google Scholar 

  74. A. Michels, pvT Data for R-22, in J. J. Martin, ed., Ind. Eng. Chem. 59:34(1967).

  75. A. V. Kletskii, Teplofiz. Sovo. Freona-22 (Komitet Standartov, Moskva, 1970).

    Google Scholar 

  76. K. Oguchi, H. Sagara, I. Matsushita, K. Watanabe, and I. Tanishita, Trans. Jap. Soc. Mech. Eng. 45:1522(1979).

    Google Scholar 

  77. R. Kohlen, H. Kratzke, and S. Müller, J. Chem. Thermodyn. 17:1141(1985).

    Google Scholar 

  78. R. Kohlen, Das fluide Zustandsgebiet von R-22. Fortschr.-Ber. VDI, Reihe 19, 14(1987).

    Google Scholar 

  79. W. Blanke and R. Weiß, Messungen der Druck-Temperaturabhängigkeit der Flüssigkeitsdichten von Chlordifluormethan (R-22) vom Tripelpunkt bis 400 K. DKV-Tagungsber., Vol. 17 (DKV, Stuttgart, 1990).

    Google Scholar 

  80. H. Fukuizumi and M. Uematsu, J. Chem. Eng. Data 36:91(1991).

    Google Scholar 

  81. V. G. Niesen, L. J. van Poolen, S. L. Outcalt, and C. D. Holcomb, Fluid Phase Equil. 97:81(1994).

    Google Scholar 

  82. I. I. Novikov and L. M. Lagutina, Zh. Prikl. Mekh. Fiz. 8:147(1967).

    Google Scholar 

  83. R. Niepmann, Messung der Ultraschallgeschwindigkeit in Flüssigkeiten über einen großen Temperatur-und Druckbereich (Ph.D. Thesis, Ruhr-University Bochum, 1983).

    Google Scholar 

  84. W. Lemming, Experimentelle Bestimmung akustischer und thermischer Virialkoeffizienten von Arbeitsstoffen der Energietechnik, Fortschr.-Ber. VDI, Reihe 19, 32(1989).

    Google Scholar 

  85. E. F. Neilson and D. White, J. Am. Chem. Soc. 79:5618(1957).

    Google Scholar 

  86. G. Ernst and J. Büsser, J. Chem. Thermodyn. 2:787(1970).

    Google Scholar 

  87. K. Bier, G. Ernst, and G. Maurer, J. Chem. Thermodyn. 6:1027(1974).

    Google Scholar 

  88. G. Ernst and H. Wirbser, Isobaric Heat Capacities of R-22, Private communication (University Karlsruhe, Karlsruhe, 1991).

    Google Scholar 

  89. K. Bier, G. Maurer, and H. Sand, Ber. Bunsenges. Phys. Chem. 84:430(1980).

    Google Scholar 

  90. R. Günther and K. Stephan, Klima-Kälte-Heizung 17:242(1989).

    Google Scholar 

  91. R. Günther and K. Stephan, Klima-Kälte-Heizung 17:292(1989).

    Google Scholar 

  92. B. Schramm and Ch. Weber, J. Chem. Thermodyn. 23:281(1991).

    Google Scholar 

  93. M. Kriebel, Kältetechnik-Klimatisierung 19:8(1967).

    Google Scholar 

  94. Y. Takaishi, N. Kagawa, M. Uematsu, and K. Watanabe, Volumetric properties of the binary mixtures dichlorodifluoromethane + chlorodifluoromethane, in Proc. 8th Symp. on Thermophys. Prop., Vol. 2 (ASME, New York, 1982), pp. 387-395.

    Google Scholar 

  95. H. Fukuizima and M. Uematsu, Int. J. Thermophys. 12:371(1991).

    Google Scholar 

  96. J. C. Holste, H. A. Duarte-Garza, and M. A. Villamanan-Olfos, Thermodynamic Properties Measurements (ASME Winter Annual Meeting, New Orleans, Louisiana, 1993).

    Google Scholar 

  97. Z. Y. Quian, H. Nishimura, H. Sato, and K. Watanabe, Int. J. JSME B 36:665(1993).

    Google Scholar 

  98. C. Bouchon and D. Richon, Simultaneous measurements of phase equilibrium and volumetric properties by vibrating tube densimetry: apparatus and results involving HFC, in Proc. Joint Meeting IIR Com. B1, B2, E1, and E2 (Padova, Italy, 1994).

  99. D. R. Defibaugh, G. Morrison, and L. A. Weber, J. Chem. Eng. Data 39:333(1994).

    Google Scholar 

  100. T. Sato, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39:851(1994).

    Google Scholar 

  101. J. W. Magee, Int. J. Thermophys. 17:803(1996).

    Google Scholar 

  102. H.-L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1401(1996).

    Google Scholar 

  103. B. deVries, Thermodynamische Eigenschaften der Kältemittel R-32, R-125 und R-143a, DKV-Forsch.-Ber. 55 (DKV, Stuttgart, 1997).

    Google Scholar 

  104. T. O. D. Lüddecke and J. W. Magee, Int. J. Thermophys. 17:823(1996).

    Google Scholar 

  105. A. J. Grebenkov, Y. G. Kotelevsky, V. V. Saplitza, O. V. Beljaeva, T. A. Zajatz, and B. D. Timofeev, Experimental study of thermal conductivity of some ozone safe refrigerants and speed of sound in their liquid phase, in Proc. Joint Meeting IIR Com. B1, B2, E1, and E2 (Padova, Italy, 1994).

  106. T. Hozumi, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39:493(1994).

    Google Scholar 

  107. M. Yomo, H. Sato, and K. Watanabe, High Temp.–High Press. 26:267(1994).

    Google Scholar 

  108. P. F. Malbrunot, P. A. Meunier, G. M. Scatena, W. H. Mears, K. P. Murphy, and J. V. Sinka, J. Chem. Eng. Data 13:16(1968).

    Google Scholar 

  109. A. Kanungo, T. Oi, A. Popowicz, and T. Ishida, J. Phys. Chem. 91:4198(1987).

    Google Scholar 

  110. C. D. Holcomb, V. G. Niesen, L. J. van Poolen, and S. L. Outcalt, Fluid Phase Equil. 91:145(1993).

    Google Scholar 

  111. L. A. Weber and A. R. H. Goodwin, J. Chem. Eng. Data 38:254(1993).

    Google Scholar 

  112. L. A. Weber and A. M. Silva, J. Chem. Eng. Data 39:808(1994).

    Google Scholar 

  113. M. Nagel and K. Bier, Int. J. Refrig. 18:534(1995).

    Google Scholar 

  114. L. Riedel, Z. ges. Kälteindustrie 45:221(1938).

    Google Scholar 

  115. V. Z. Geller, Teplofiz. Svoj. Ves. Material. 7:135(1973).

    Google Scholar 

  116. M. J. Mastroianni, R. F. Stahl, and P. N. Sheldon, J. Chem. Eng. Data 23:113(1978).

    Google Scholar 

  117. Yu. A. Vesloguzov, Teplofiz. Svoj. Ves. Material. 13:42(1979).

    Google Scholar 

  118. O. P. Ponomareva, Teplofiz. Svoj. Ves. Material. 16:64(1982).

    Google Scholar 

  119. R. M. Varushenko and L. L. Bulgatova, Trudy Chim. Chim. Technol. 1:69(1974).

    Google Scholar 

  120. N. Matsuo, Thermophysical properties of R-123, pvT properties, viscosity, and thermal conductivity, in Proc. 9th Japan Symp. Thermophys. Prop. (1988), pp. 231-234.

  121. Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:225(1990).

    Google Scholar 

  122. L. A. Weber, J. Chem. Eng. Data 35:237(1990).

    Google Scholar 

  123. G. Morrison and D. K. Ward, Fluid Phase Equil. 62:65(1991).

    Google Scholar 

  124. C. C. Piao, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:398(1991).

    Google Scholar 

  125. K. Oguchi, M. Yamagishi, and A. Murano, Fluid Phase Equil. 80:131(1992).

    Google Scholar 

  126. J. W. Magee, Int. J. Thermophys. 21:1303(2000).

    Google Scholar 

  127. J. W. Magee, Int. J. Thermophys. 21:1291(2000).

    Google Scholar 

  128. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 95:5236(1991).

    Google Scholar 

  129. T. Takagi, J. Chem. Eng. Data 36:394(1991).

    Google Scholar 

  130. N. Nakagawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 36:156(1991).

    Google Scholar 

  131. T. Yamashita, H. Kubota, Y. Tanaka, T. Makita, and H. Kashiwagi, Physical properties of new halogenated hydrocarbons, in Proc. 10th Japan Symp. Thermophys. Prop. (1989).

  132. M. Buschmeier, W. Künstler, G. Herres, and D. Gorenflo, Phasengleichgewicht und Dichte der Stoffsysteme R-22/R-142b sowie R-227/R-123. DKV-Tagungsber. 19 (DKV, Stuttgart, 1992).

    Google Scholar 

  133. L. A. Weber, Fluid Phase Equil. 80:141(1992)

    Google Scholar 

  134. K. Oguchi and Y. Takaishi, Measurement of saturated liquid density of HCFC-123, in Proc. 10th Japan Symp. Thermophys. Prop. (1989).

  135. J. Schmidt, Saturated Liquid Densities for R 123, Private communication, (NIST, Gaithersburg, Maryland, 1989).

    Google Scholar 

  136. M. Fukushima, Trans. JAR 7(3):243(1990).

    Google Scholar 

  137. L. A. Weber and J. M. H. Levelt Sengers, Fluid Phase Equil. 55:241(1990).

    Google Scholar 

  138. M. Fukushima, Trans. JAR 8(1):65(1991).

    Google Scholar 

  139. C. Yokoyama and S. Takahashi, Fluid Phase Equil. 67:227(1991).

    Google Scholar 

  140. H. Sunaga, R. Tillner-Roth, H. Sato, and K. Watanabe, Int. J. Thermophys. 19:1623(1998).

    Google Scholar 

  141. D. R. Defibaugh and G. Morrison, Fluid Phase Equil. 80:157(1992).

    Google Scholar 

  142. S. J. Boyes and L. A. Weber, J. Chem. Thermodyn. 27:163(1995).

    Google Scholar 

  143. F. Ye, H. Sato, and K. Watanabe, J. Chem. Eng. Data 40:148(1995).

    Google Scholar 

  144. H. A. Duarte-Garza, C. E. Stouffer, K. R. Hall, J. C. Holstee, K. N. Marsh, and B. E. Gammon, J. Chem. Eng. Data 42:745(1997).

    Google Scholar 

  145. K. Kraft and A. Leipertz, Int. J. Thermophys. 15:387(1994).

    Google Scholar 

  146. T. Hozumi, H. Sato, and K. Watanabe, Int. J. Thermophys. 17:587(1996).

    Google Scholar 

  147. K. A. Gillis, Int. J. Thermophys. 18:73(1997).

    Google Scholar 

  148. C. M. Bignell and P. J. Dunlop, J. Chem. Phys. 98:4889(1993).

    Google Scholar 

  149. Y. Monluc, T. Sagawa, H. Sato, and K. Watanabe, Thermodynamic Properties of HFC-125, in Proc. 12th Japan Symp. Thermophys. Prop. (1995).

  150. L. C. Wilson, W. V. Wilding, G. M. Wilson, R. L. Rowley, V. M. Felix, and T. Chilsom-Carter, Fluid Phase Equil. 80:167(1992).

    Google Scholar 

  151. T. Sagawa, Thermodynamic Properties of HFC-125 by a Constant-Volume Method (M.S. Thesis, Keio University, Yokohama, 1994).

    Google Scholar 

  152. T. Sagawa, H. Sato, and K. Watanabe, High Temp.–High Press. 26:193(1994).

    Google Scholar 

  153. Y. Higashi, Int. J. Refrig. 17:524(1994).

    Google Scholar 

  154. S. Kuwabara, H. Aoyama, H. Sato, and K. Watanabe, J. Chem. Eng. Data 40:112(1995).

    Google Scholar 

  155. L. A. Weber, Int. J. Thermophys. 10:617(1989).

    Google Scholar 

  156. C. C. Piao, H. Sato, and K. Watanabe, ASHRAE Trans. 96:132(1990).

    Google Scholar 

  157. S. Tang, G. X. Jin, and J. V. Sengers, Int. J. Thermophys. 12:515(1991).

    Google Scholar 

  158. H. Hou, J. C. Holste, B. E. Gammon, and K. N. Marsh, Int. J. Refrig. 15:365(1992).

    Google Scholar 

  159. J. W. Magee, Int. J. Refrig. 15:372(1992).

    Google Scholar 

  160. Z. Y. Quian, H. Sato, and K. Watanabe, Fluid Phase Equil. 78:323(1993).

    Google Scholar 

  161. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 24:413(1992).

    Google Scholar 

  162. M. Dressner and K. Bier, Thermische Mischungseffekte in binären Gasmischungen mit neuen Kältemitteln. Fortschr.-Ber. VDI, Reihe 3, 332(1993).

    Google Scholar 

  163. J. Klomfar, J. Hruby, and O. Sifner, Int. J. Thermophys. 14:727(1993).

    Google Scholar 

  164. R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 25:277(1993).

    Google Scholar 

  165. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741(1990).

    Google Scholar 

  166. T. Takagi, JAR and Japan Flon Gas Assoc. 56(1991).

  167. H. J. R. Guedes and J. A. Zollweg, Int. J. Refrig. 15:381(1992).

    Google Scholar 

  168. W. Beckermann, Messung der Schallgeschwindigkeit an Arbeitsstoffen der Energietechnik. Fortschr.-Ber. VDI, Reihe 19, 67(1993).

    Google Scholar 

  169. A. Saitoh, S. Nakagawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:107(1990).

    Google Scholar 

  170. S. Nakagawa, H. Sato, and K. Watanabe, Specific heat at constant pressure for liquid new refrigerants, in Proc. 27th Nat. Heat Trans. Symp. Japan, (Nagoya, 1990).

  171. G. Ernst, G. Bräuning, J. Gürtner, Y. J. Parks, and H. Wirbser, Experimental results for R-134a, Private communication (Universität Karlsruhe, 1992).

  172. H. Wirbser, Hochdruckströmungskalorimetrie: Spezifische Wärmekapazitäten und differentieller Joule-Thomson-Koeffizient halogenisierter Kohlenwasser-stoffe (Ph.D. thesis, Universität Karlsruhe, 1994).

  173. W. Blanke, G. Klingenberg, and F. Weber, Int. J. Thermophys. 19:653(1998).

    Google Scholar 

  174. H. D. Baehr and R. Tillner-Roth, J. Chem. Thermodyn. 23:1063(1991).

    Google Scholar 

  175. J. W. Magee and J. B. Howley, Int. J. Refrig. 15:362(1992).

    Google Scholar 

  176. A. R. H. Goodwin, D. R. Defibaugh, and L. A. Weber, Int. J. Thermophys. 13:837(1993).

    Google Scholar 

  177. E. W. Lemmon and R. T Jacobsen, J. Phys. Chem Ref. Data 29:521(2000).

    Google Scholar 

  178. G. Giuliani, S. Kumar, F. Polonara, and D. Zazzini, Experimental determination of vapour pressure of 1,1,1-trifluoroethane (R-143a), in Proc. of the Joint Meeting of IIR Com. B1, B2, E1, and E2 (Padova, Italy, 1994).

  179. G. Giuliani, S. Kumar, F. Polonara, and D. Zazzini, J. Chem. Eng. Data 40:903(1995).

    Google Scholar 

  180. H.-L. Zhang, H. Sato, and K. Watanabe, J. Chem. Eng. Data 40:887(1995).

    Google Scholar 

  181. L. A. Weber and D. R. Defibaugh, J. Chem. Eng. Data 41:1477(1996).

    Google Scholar 

  182. D. R. Defibaugh and M. R. Moldover, J. Chem. Eng. Data 42:160(1997).

    Google Scholar 

  183. J. W. Magee, Int. J. Thermophys. 19:1381(1998).

    Google Scholar 

  184. J. W. Magee, Int. J. Thermophys. 19:1397(1998).

    Google Scholar 

  185. W. Beckermann and F. Kohler, Int. J. Thermophys. 16:445(1995).

    Google Scholar 

  186. H. Russel, D. R. V. Golding, and D. M. Yost, J. Am. Chem. Soc. 66:16(1944).

    Google Scholar 

  187. S. L. Outcalt and M. O. McLinden, J. Phys. Chem. Ref. Data 25:605(1996).

    Google Scholar 

  188. V. Z. Geller, E. G. Porichanski, P. I. Svetlichnyi, and Y. G. Elkin, Kholod. Tekh. 29:43(1980).

    Google Scholar 

  189. W. Blanke and R. Weiß, Fluid Phase Equil. 80:179(1992).

    Google Scholar 

  190. T. Hozumi, T. Koga, H. Sato, and K. Watanabe, Int. J. Thermophys. 14:739(1993).

    Google Scholar 

  191. K. Kraft and A. Leipertz, Int. J. Thermophys. 15:791(1994).

    Google Scholar 

  192. E. G. Porichanski, O. P. Ponomareva, and P. I. Svetlichny, Izv. Vyssh. Uchebn. Zaved Energ. 3:122(1982).

    Google Scholar 

  193. W. Benade, Bestimmung der thermophysikalischen Eigenschaften alternativer Kältemittel (Ph.D. thesis, University Essen, 1993).

  194. S. Nakagawa, T. Hori, H. Sato, and K. Watanabe, J. Chem. Eng. Data 38:70(1993).

    Google Scholar 

  195. A. Iso and M. Uematsu, Phys. A 156:454(1989).

    Google Scholar 

  196. T. Tamatsu, T. Sato, H. Sato, and K. Watanabe, Int. J. Thermophys. 13:985(1992).

    Google Scholar 

  197. M. Türk, J. Zhai, M. Nagel, and K. Bier, Messung des Dampfdruckes und der kritischen Zustandsgrößen von neuen Kältemitteln. Fortschr.-Ber. VDI, Reihe 19, 79(1994).

    Google Scholar 

  198. H. Sato, M. Uematsu, and K. Watanabe, Fluid Phase Equil. 36:167(1987).

    Google Scholar 

  199. A. Valtz, S. Laugier, and D. Richon, J. Chem. Eng. Data 32:397(1987).

    Google Scholar 

  200. A. Michels, C. Michels, and H. Wouters, Proc. Roy. Soc. A 153:214(1935).

    Google Scholar 

  201. M. P. Vukalovich and V. V. Altunin, Teploenergetica 9(5):56(1962).

    Google Scholar 

  202. J. Juza, V. Kmonicek, and O. Sifner, Physica 31:1735(1965).

    Google Scholar 

  203. V. A. Kirillin, S. A. Ulybin, and E. P. Zherdev, Teploenergetica 16(6):92(1969).

    Google Scholar 

  204. V. A. Kirillin, S. A. Ulybin, and E. P. Zherdev, Teploenergetica 16(2):94(1969).

    Google Scholar 

  205. V. A. Kirillin, S. A. Ulybin, and E. P. Zherdev, Experimental investigation of carbon dioxide density at temperatures from −50 to +200°C and pressures up to 500 bar, in Proc. 1st Intern. Conf. Calorimetry and Thermodynamics, (Warsaw, 1969).

  206. V. A. Kirillin, S. A. Ulybin, and E. P. Zherdev, Teploenergetica 17(5):69(1970).

    Google Scholar 

  207. V. N. Popov and M. K. Sayapov, Teploenergetica 17(4):76(1970).

    Google Scholar 

  208. W.-W. R. Lau, A Continuously Weighed Pycnometer Providing Densities for Carbon Dioxide+Ethane Mixtures Between 240 and 350 K at Pressures up to 35 MPa (Ph.D. thesis, Texas A&M University, 1986).

  209. G. J. Esper, Direkte und Indirekte pvT-Messungen an Fluiden, (Ph.D. thesis, Ruhr-Universität Bochum, 1987).

    Google Scholar 

  210. J. C. Holste, K. R. Hall, P. T. Eubank, G. Esper, M. Q. Warowny, D. M. Bailey, J. G. Young, and M. T. Bellamy, J. Chem. Thermodyn. 19:1233(1987).

    Google Scholar 

  211. M. Jaeschke, pρT Data from Refractive-index Measurements, Private communication, (Ruhrgas AG, Essen, 1987).

    Google Scholar 

  212. M. Jaeschke, pρT Data from Burnett Measurements, Private communication (Ruhrgas AG, Essen, 1987).

    Google Scholar 

  213. J. W. Magee and J. F. Ely, Int. J. Thermophys. 9:547(1988).

    Google Scholar 

  214. J. F. Ely, W. M. Haynes, and B. C. Bain, J. Chem. Thermodyn. 21:879(1989).

    Google Scholar 

  215. W. Duschek, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 22:827(1990).

    Google Scholar 

  216. M. Jaeschke, A. E. Humphreys, P. Van Caneghem, M. Fauveau, R. Janssen-Van Rosmalen, and Q. Pellei, GERG Technical Monograph 4–The GERG Databank of High Accuracy Compressibility Factor Measurements, Edited by the Group Europeen de Recherches Gazieres, (VDI, Düsseldorf, 1990).

    Google Scholar 

  217. R. Gilgen, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 24:1493(1992).

    Google Scholar 

  218. X. Y. Guo, R. Kleinrahm, and W. Wagner, Experimentelle Untersuchung der systematischen Meßfehler von Betriebsdichteaufnehmern für Erdgas-Meßstrecken-Teil 1: Meßergebnisse für Stickstoff, Kohlendioxid, Argon, Neon, Ethan und Ethen, Report Lehrstuhl für Thermodynamik (Ruhr-Universität Bochum, 1992).

    Google Scholar 

  219. K. Brachthäuser, R. Kleinrahm, H.-W. Lösch, and W. Wagner, Entwicklung eines neuen Dichtemeßverfahrens und Aufbau einer Hochtemperatur-Hochdruck-Dichtemeßanlage, Fortschr.-Ber. VDI, Reihe 8, 371(1993).

    Google Scholar 

  220. A. Fenghour, W. A. Wakeham, and J. T. R. Watson, J. Chem. Thermodyn. 27:219(1995).

    Google Scholar 

  221. P. Nowak, Th. Tielkes, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 29:885(1997).

    Google Scholar 

  222. J. Klimeck, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. (in press).

  223. J. W. Magee and J. F. Ely, Int. J. Thermophys. 7:1163(1986).

    Google Scholar 

  224. I. M. Abdulagatov, N. G. Polikhronidi, and R. G. Batyrova, Ber. Bunsenges. Phys. Chem. 98:1068(1994).

    Google Scholar 

  225. I. I. Novikov and Y. S. Trelin, Zur. Prik. Mech. Tech. Fiz. 2:112(1960).

    Google Scholar 

  226. I. I. Novikov and Y. S. Trelin, Teploenergetica 9(2):79(1962).

    Google Scholar 

  227. W. Pecceu and W. Van Dael, Physica 63:154(1972).

    Google Scholar 

  228. R. Bender, K. Bier, and G. Maurer, Ber. Bunsenges. Phys. Chem. 85:778(1981).

    Google Scholar 

  229. G. Ernst, G. Maurer, and E. Wiederuh, J. Chem. Thermodyn. 21:53(1989).

    Google Scholar 

  230. G. Ernst and U. E. Hochberg, J. Chem. Thermodyn. 21:407(1989).

    Google Scholar 

  231. D. Möller, B. E. Gammon, K. N. Marsh, K. R. Hall, and J. C. Holste, J. Chem. Thermodyn. 25:1273(1993).

    Google Scholar 

  232. W. Duschek, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 22:841(1990).

    Google Scholar 

  233. C. H. Meyers and R. S. Jessup, Refrig. Eng. 11 (10):345(1925).

    Google Scholar 

  234. J. A. Beattie and Ch. K. Lawrence, J. Am. Chem. Soc. 52:6(1930).

    Google Scholar 

  235. A. Kumagi and T. Toriumi, J. Chem. Eng. Data 16:293(1971).

    Google Scholar 

  236. K. Date, Rev. Phys. Chem. Japan 43:1(1973).

    Google Scholar 

  237. H. Garnjost, Druck–Volumen–Temperaturmessungen mit Ammoniak und Wasser. (Ph.D. thesis, Ruhr-Universität Bochum, 1974).

    Google Scholar 

  238. M. Zander and W. Thomas, J. Chem. Eng. Data 24:1(1979).

    Google Scholar 

  239. M. H. Streatfield and C. Henderson, J. Chem. Thermodyn. 19:1163(1987).

    Google Scholar 

  240. S. Glowka, Pol. J. Chem. 64:699(1990).

    Google Scholar 

  241. F. Harms-Watzenberg, Messung und Korrelation der thermodynamischen Eigenschaften von Wasser-Ammoniak Gemischen. Fortschr.-Ber. VDI, Reihe 3, 380(1995).

    Google Scholar 

  242. Yu. P. Blagoi, A. E. Butko, S. A. Mikhailenko, and V. V. Yakuba, Russian J. Phys. Chem. 42:564(1968).

    Google Scholar 

  243. N. S. Osborne and M. S. van Dusen, Bur. of Stand. Bull. 14:397(1918).

    Google Scholar 

  244. N. S. Osborne, H. F. Stimson, T. S. Sligh, and C. S. Cragoe, Sci. Pap. Bur. Stand. 20:65(1925).

    Google Scholar 

  245. R. Overstreet and W. F. Giauque, J. Am. Chem. Soc. 59:254(1937).

    Google Scholar 

  246. C. S. Cragoe, C. H. Meyers, and C. S. Taylor, Sci. Pap. Bur. Stand. 16:1(1920).

    Google Scholar 

  247. A. Stock, F. Henning, and E. Kuss, Ber. Dtsch. Chem. Ges. 54:1119(1921).

    Google Scholar 

  248. C. S. Cragoe and D. R. Harper, ASRE J. 7(2):113(1920).

    Google Scholar 

  249. W. S. Groenier and G. Thodos, J. Chem. Eng. Data 5:285(1960).

    Google Scholar 

  250. C. S. Cragoe, E. C. McKelvy, and G. F. O'Connor, Sci. Pap. Bur. Stand. 18:707(1922).

    Google Scholar 

  251. G. Herres and D. Gorenflo, First Attempts to Describe Associating Fluids by Adding Physically Motivated Terms to an Empirical Equation of State, Private communication (Universität Paderborn, 2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Span, R., Wagner, W. Equations of State for Technical Applications. III. Results for Polar Fluids. International Journal of Thermophysics 24, 111–162 (2003). https://doi.org/10.1023/A:1022362231796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022362231796

Navigation