Skip to main content
Log in

Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We examined the effects of metallic silver island films on resonance energy transfer (RET) between a donor and acceptor bound to double helical DNA. The donor was 4',6-diamidino-2-phenylindole (DAPI) and the acceptor was propidium iodide (PI). Proximity of the labeled DNA to the silver particles resulted in a dramatic increase in RET as seen from the emission spectra and the donor decay times. Proximity to silver particles results in an increase of the Förster distance from 35 Å an to an apparent value of 166 Å. These results suggest a new type of DNA hybridization assays based on RET over distances much longer than the free-space Forster distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Stryer (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819-846.

    Google Scholar 

  2. D. M. J. Lilley and T. J. Wilson (2000) Fluorescence resonance energy transfer as a structural tool for nucleic acids. Curr. Opin. Chem. Biol. 4, 507-517.

    Google Scholar 

  3. C. G. Dos Remedios and P. D. J. Moens (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. J. Struct. Biol. 115, 175-185.

    Google Scholar 

  4. P. Wu and L. Brand (1994) Review-resonance energy transfer. Methods and applications. Anal Biochem. 218, 1-13.

    Google Scholar 

  5. D. S. Talaga, W. L. Lau, H. Roder, J. Tang, Y. Jia, W. F. DeGrado, and R. M. Hochstrasser (2000) Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. PNAS 97, 13021-13026.

    Google Scholar 

  6. E. B. Getz, R. Cooke, and P. R. Selvin (1998) Luminescence resonance energy transfer measurements in myosin. Biophys. J. 74, 2451-2458.

    Google Scholar 

  7. J. Matko and M. Edidin (1997) Energy transfer methods for detecting molecular clusters on cell surfaces. Methods in Enzymol. 278, 444-462.

    Google Scholar 

  8. H. Laguitton-Pasquier, M. Van der Auweraer, and F. C. De Schryver (1998) Bidimensional distribution of a cyanide dye in Langmuir-Blodgett (LB) monolayers studied by time-resolved and spatially resolved fluorescence. Langmuir 14, 5172-5183.

    Google Scholar 

  9. Y. C. Lee (1997) Fluorescence spectrometry in studies of carbohydrate-protein interactions. J. Biochem. 121, 818-825.

    Google Scholar 

  10. M. P. Brown, D. Toptygin, K. B. Lee, T. Animashaun, R. C. Hughes, Y. C. Lee, and L. Brand (1998) The tryptophan fluorescence of Tetracarbidium conophorum agglutinin II and a solution-based assay for the binding of a biantennary glycopeptide. J. Protein Chem. 17, 149-159.

    Google Scholar 

  11. M. Masuko, S. Ohuchi, K. Sode, H. Ohtani, and A. Shimadzu (2000) Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogenous solution conditions. Nucleic Acids Res. 28, e34.

    Google Scholar 

  12. S. Sueda, J. Yuan, and K. Matsumoto (2000) Homogenous DNA hybridization assay by using europium luminescence energy transfer. Bioconjugate Chem. 11, 827-831.

    Google Scholar 

  13. T. Mitsui, H. Nakano, and K. Yamana (2000) Coumarin-fluorescein pair as a new donor-acceptor set for fluorescence energy transfer study of DNA. Tetrahedron Letts. 41, 2605-2608.

    Google Scholar 

  14. D. G. Norman, R. J. Grainger, D. Uhrin, and D. M. J. Lilley (2000) Location of cyanine-3 on double-stranded DNA: Importance for fluorescence resonance energy transfer studies. Biochem. 39, 6317-6324.

    Google Scholar 

  15. F. Walter, A. I. H. Murchie, D. Duckett, and D. M. J. Lilley (1998) Global structure of four-way RNA junctions studied using fluorescence resonance energy transfer. RNA 4, 719-728.

    Google Scholar 

  16. M. Yang, L.-Q. Ren, M. Huang, R. Y. C. Kong, and W. F. Fong (1998) A DNA assay based on fluorescence resonance energy transfer and DNA triplex formation. Anal. Biochem. 259, 272-274.

    Google Scholar 

  17. U. Kubitscheck, M. Kircheis, R. Schweitzer-Stenner, W. Dreybrodt, T. M. Jovin, and I. Pecht (1991) Fluorescence resonance energy transfer on single living cells. Application to binding of monovalent haptens to cell-bound immunoglobulin E. Biophys. J. 60, 307-318.

    Google Scholar 

  18. A. Miyawaki, J. Llopis, R. Helm, J. M. McCaffrey, J. A. Adams, M. Ikura, and R. Y. Tsien (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388(28), 882-887.

    Google Scholar 

  19. D. A. De Angelis, G. Miesenböck, B. V. Zemelman, and J. E. Rothman (1998) PRIM: Proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Natl. Acad. Sci. USA 95, 12312-12316.

    Google Scholar 

  20. E. F. Ullman, M. Schwarzberg, and K. E. Rubenstein (1976) Fluorescent excitation transfer immunoassay: A general method for determination of antigens. J. Biol. Chem. 251, 264-270.

    Google Scholar 

  21. U. Schobel, H.-J. Egelhaaf, A. Brecht, D. Oelkrug, and G. Gauglitz (1999) New donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconj. Chem. 10, 1107-1114.

    Google Scholar 

  22. P. R. Selvin, T. M. Rana, and J. E. Hearst (1994) Luminescence resonance energy transfer. J. Am. Chem. Soc. 116, 6029-6030.

    Google Scholar 

  23. P. R. Selvin (1996) Lanthanide-based resonance energy transfer. IEEE J. Selected Topics in Quantum Electron. 2, 1077-1087.

    Google Scholar 

  24. G. Mathis (1993) Rare earth cryptates and homogenous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953-1959.

    Google Scholar 

  25. K. H. Drexhage (1974) Interaction of light with monomolecular dye lasers, Chapter IV in E. Wolf (Ed.). Progress in Optics XII, North-Holland, Amsterdam-London 1974, pp. 161-232.

    Google Scholar 

  26. E. A. Hinds (1991) Cavity quantum electrodynamics. Advances in Atom. Molec. and Opt. Phys. 28, 237-289.

    Google Scholar 

  27. R. R. Chance, A. Prock, and R. Silbey (1978) Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1-65.

    Google Scholar 

  28. D. A. Weitz and S. Garoff (1983) The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. J. Chem. Phys. 78, 5324-5338.

    Google Scholar 

  29. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence. Molec. Phys. 80, 1031-1046.

    Google Scholar 

  30. H. Chew (1987) Transition rates of atoms near spherical surfaces. J. Chem. Phys. 87, 1355-1360.

    Google Scholar 

  31. J. Gersten and A. Nitzan (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75, 1139-1152.

    Google Scholar 

  32. X. M. Hua, J. I. Gersten, and A. Nitzan (1985) Theory of energy transfer between molecules near solid state particles. J. Chem. Phys. 83, 3650-3659.

    Google Scholar 

  33. J. I. Gersten and A. Nitzan (1984) Accelerated energy transfer between molecules near a solid particle. Chem. Phys. Letts. 104, 31-37.

    Google Scholar 

  34. J. R. Lakowicz (2001) Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1-24.

    Google Scholar 

  35. J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, Z. Gryczynski, and I. Gryczynski (2002) Radiative decay engineering 2: Effects of silver island films on fluorescence intensity, lifetimes and resonance energy transfer. Anal. Biochem. 301, 267-277.

    Google Scholar 

  36. F. Ni and T. M. Cotton (1986) Chemical procedure for preparing surface-enhanced Raman scattering active silver films. Anal. Chem. 58, 3159-3163.

    Google Scholar 

  37. J. R. Lakowicz and B. P. Maliwal (1985) Construction and performance of a variable-frequency phase modulation fluorometer. Biophys. Chem. 21, 61-78.

    Google Scholar 

  38. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990) A 10-GHz frequency-domain fluorometer. Rev. Sci. Instrum. 61, 2331-2337.

    Google Scholar 

  39. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limkeman (1994) Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46, 463-477.

    Google Scholar 

  40. A. Blumen and J. Manz (1979) On the concentration and time dependence of the energy transfer to randomly distributed acceptors. J. Chem. Phys. 71, 4696-4702.

    Google Scholar 

  41. B. P. Maliwal, J. Kusba, and J. R. Lakowicz (1995) Fluorescence energy transfer in one dimension: frequency domain fluorescence study of DNA-fluorophore complexes. Biopolymers 35, 245-255.

    Google Scholar 

  42. S.-I. Murata, J. Kusba, G. Piszczek, I. Gryczynski, and J. R. Lakowicz (2000) Donor fluorescence decay analysis for energy transfer in double-helical DNA with various acceptor concentrations. Biopolymers (Biospectrosc.) 57, 306-315.

    Google Scholar 

  43. J. R. Lakowicz (Ed.)(1999) Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Publishers, New York, 698 pp.

    Google Scholar 

  44. J. T. Bookout, T. R. Joaquim, M. K. Magin, G. J. Rogan, and R. P. Lirette (2000) Development of a dual-label time-resolved fluorometric immunoassay for the simultaneous detection of two recombinant proteins in potato. J. Agric. Food Chem. 48, 5868-5873.

    Google Scholar 

  45. M. Samiotaki, M. Kwiatkowski, N. Ylitalo, and U. Landegren (1997) Seven-color time-resolved fluorescence hybridization analysis of human papilloma virus types. Anal. Biochem. 253, 156-161.

    Google Scholar 

  46. T. L. Ferea and P. O'Brown (1999) Observing the living genome. Curr. Opin. Genetics and Dev. 9, 715-722.

    Google Scholar 

  47. R. J. Lipshutz, S. P. A. Fodor, T. R. Gingeras, and D. J. Lockhart (1999) High density synthetic oligonucleotide arrays. Nature Gen. Suppl. 1, 20-24.

    Google Scholar 

  48. J. G. Hacia, L. C. Brody, and F. S. Collins (1998) Applications of DNA chips for genome analysis. Molec. Psychiatry 3, 483-492.

    Google Scholar 

  49. A. Adronov, S. L. Gilat, J. M. J. Fréchet, K. Ohta, F. V. R. Neuwahl, and G. R. Fleming (2000) Light harvesting and energy transfer in laser-dye labeled poly(aryl ether) dendrimers. J. Am. Chem. Soc. 122, 1175-1185.

    Google Scholar 

  50. S. F. Swallen, R. Kopelman, J. S. Moore, and C. Devadoss (1999) Dendrimer photoantenna supermolecules: energetic funnels, exciton hopping and correlated excimer formation. J. Molec. Structure 485–486, 585-597.

    Google Scholar 

  51. J. González and R. Y. Tsien (1995) Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys. J. 69, 1272-1280.

    Google Scholar 

  52. T. Ng, A. Squire, G. Hansra, F. Bornancin, C. Prevostel, A. Hanby, W. Harris, D. Barnes, S. Schmidt, H. Mellor, P. I. H. Hastiaens, and P. J. Parker (1999) Imaging protein kinase Cα activation in cells. Science 283, 2085-2089.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Lakowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakowicz, J.R., Kuśba, J., Shen, Y. et al. Effects of Metallic Silver Particles on Resonance Energy Transfer Between Fluorophores Bound to DNA. Journal of Fluorescence 13, 69–77 (2003). https://doi.org/10.1023/A:1022306630924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022306630924

Navigation