Skip to main content
Log in

Chemical Composition and Structure of Thin Films Produced by Chemical Vapor Deposition

Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This paper reports results from studies of the chemical composition and structure of semiconducting, dielectric, and metallic films produced from molecular precursors by the chemical vapor deposition method. A study was made of films of zinc sulfides, mixed copper, cadmium, and zinc sulfides, boron nitride, carbonitride, silicon carbonitride, and iridium films. It is shown that the use of metal compounds with different ligands (zinc and manganese) enables production of zinc sulfide films in which manganese ions are uniformly incorporated into the zinc sulfide crystal lattice to substitute zinc at the lattice sites. For the films of simple and mixed cadmium, copper, and zinc sulfides, the film structure depends on the type of substrate. The thin layers of mixed cadmium and zinc sulfides are asubstitution solution with a hexagonal structure. The thin layers of boron nitride produced from borazine exhibit a nanocrystalline structure and are a mixture of cubic and hexagonal phases. Composite layers were produced from alkylamine boranes and their mixtures with ammonia. Depending on synthesis conditions, the layers are mixtures of hexagonal boron nitride, carbide, and carbonitride or pure boron nitride. Using silyl derivatives of asymmetric dimethylhydrazine containing Si—N and C—N bonds in the starting molecule, we produced silicon carbonitride films whose crystal habit belongs to a tetragonal structure with lattice parameters a = 9.6 Å and c = 6.4 Å. The iridium films obtained by thermal decomposition of iridium tris‐acetylacetonate(III) on quartz substrates in the presence of hydrogen have a polycrystalline structure with crystallite sizes of 50 to 500 Å. A method for determining grain‐size composition was proposed, and grain shapes for the iridium films were analyzed. The influence of substrate temperature on the internal microstructure and growth of the iridium films is demonstrated. At the iridium–substrate interface, a transition layer forms, whose composition depends on the substrate material and deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. V. I. Belyi, A. A. Rastorguev, E. I. Ivanova, et al., “Method for producing zinc sulfide doped with manganese(II),” Patent of the Russian Federation No. 2051163, MPK6 S 09 K11/56, Publ. 12.27.95, Bull. No. 36.

  2. V. I. Belyi, A. A. Rastorguev, E. I. Ivanova, et al., “Method for producing zinc sulfide films doped with manganese(II),” Patent of the Russian Federation No. 2051163 RF, MPK6 S 09 K11/56 S30 V 23/02, Publ. 05.27.96, Bull. No. 15.

  3. N. I. Fainer, M. L. Kosinova, Yu. M. Rumyantsev, et al., Thin Solid Films, 280, 16-19 (1996).

    Google Scholar 

  4. N. I. Fainer, Yu. M. Rumyantsev, E. G. Salman, et al., Thin Solid Films, 286, 122-126 (1996).

    Google Scholar 

  5. N. I. Fainer, Yu. M. Rumyantsev, M. L. Kosinova, and F. A. Kuznetsov, Electrochem. Soc. Proc., 97-95, 1437-1442 (1997).

    Google Scholar 

  6. Yu. M. Rumyantsev, N. I. Fainer, M. L. Kosinova, et al., J. Phys. IV, 9, Pr8-777-Pr8-784 (1999).

    Google Scholar 

  7. T. P. Smirnova, L. V. Khramova, and V. I. Belyi, Vysokomol. Soed., 30, 164-169 (1984).

    Google Scholar 

  8. V. G. Bessergenev, N. V. Gelfond, I. K. Igumenov, et al., Supercond. Sci. Technol., 4, No.7, 273-278 (1991).

    Google Scholar 

  9. N. V. Gelfond, I. K. Igumenov, A. I. Boronin, et al., Surf. Sci., 275, 323-331 (1992).

    Google Scholar 

  10. N. V. Gelfond, F. V. Tuzikov, and I. K. Igumenov, Thin Solid Films, 227, No. 2, 144-152 (1993).

    Google Scholar 

  11. V. G. Bessergenev, V. I. Belyi, A. A. Rastorguev, et al., Thin Solid Films, 279, 135-279 (1996).

    Google Scholar 

  12. W. F. McClune (ed.), in: Powder Diffraction File, Card Nos. 5-492 and 5-556, International Center for Diffraction Data, ICPDC, PA (1983).

    Google Scholar 

  13. P. B. Smith, J. Vac. Sci. Technol. A, 7, 1451 (1989).

    Google Scholar 

  14. JCPDS, International Center for Diffraction Data, 10, card No. 454 (1988).

  15. Ibid, 61, card No. 031 (1988).

  16. Ibid, 40, card No. 835 (1988).

  17. Ibid, 24, card No. 57a (1988).

  18. T. P. Smirnova, L. V. Khramova, I. L. Yashkin, et al., Inorg. Mater., 28, 1414-1421 (1992).

    Google Scholar 

  19. A. K. Ballat, L. Salamanca-Riba, C. A. Taylor, and G. L. Dol, Thin Solid Films, 224, 46-57 (1993).

    Google Scholar 

  20. T. Sugino, K. Tanioka, S. Kawasaki, and J. Shirafuji, Jpn. J. Appl. Phys., 36, L463-L465 (1997).

    Google Scholar 

  21. T. P. Smirnova, L. V. Yakovkina, I. L. Jashkin, Thin Solid Films, 237, 32-37 (1997).

    Google Scholar 

  22. W. F. A. Besling, A. Goossens, B. Meester, and Schoonman, J. Appl. Phys., 83, 544-553 (1998).

    Google Scholar 

  23. A. M. Wrobel, S. Wickramanayaka, Y. Nakanishi, et al., Chem. Mater., 7, 1403-1413 (1995).

    Google Scholar 

  24. A. M. Wrobel, A. Walkiewich-Pietrzykowska, and M. Stasiak, J. Electrochem. Soc., 1060-1065 (1998).

  25. J. Q. Hu, Q. Y. Lu, K. B. Tang, et al., J. Phys. Chem., B104, 5251-5254 (2000).

    Google Scholar 

  26. T. P. Smirnova, L. V. Yakovkina, A. M. Badalyan, et al., Khim. Interes. Ustoich. Razv., 8, 731-738 (2000).

    Google Scholar 

  27. L. P. Ma, I. S. Gu, Z. J. Duan, et al., Thin Solid Films, 349, 10-13 (1999).

    Google Scholar 

  28. L. C. Chen, C. Y. Yang, D. M. Bhusari, et al., Diamond Rel. Mater., 5, 514-518 (1996).

    Google Scholar 

  29. J.-J. Wu, C.-F. Wu, Y.-C. Liao, et al., Thin Solid Films, 355-356, 417-422 (1999).

    Google Scholar 

  30. H. Efstathiadis, Z. Yin, and F. W. Smith, Phys. Rev., B46, 13119-13130 (1992).

    Google Scholar 

  31. N. Dragoe, Powder for Windows 98, version 2.0 (http://www.chem.t.u-tokyo.ac.jp /appchem/labs/kitazawa/dragoe/).

  32. L. C. Chen, D. M. Bhusari, C. Y. Yang, et al., Thin Solid Films, 303, 66-75 (1997).

    Google Scholar 

  33. N. V. Gelfond, V. I. Zaikovskii, and I. K. Igumenov, in: Poverkh. Fiz. Khim. Mekh., No. 5, 50-57 (1994).

  34. N. V. Gelfond, A. I. Boronin, M. Yu. Smirnov, et al., in: M. D. Allendorf and C. Bernard (eds.), Chemical Vapor Deposition, Proc. of the Fourteenth Int. Conf. and EUROCVD-11 (Paris, 1997), Electrochemical Society Proceedings, Vol. 97-25 (1997), pp. 1588-1595.

  35. I. K. Igumenov, N. V. Gelfond, P. S. Galkin, et al., Desalination, 136, 273-280 (2001).

    Google Scholar 

  36. N. V. Gelfond, P. S. Galkin, I. K. Igumenov et al., J. Phys. France, 11, 593-599 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badalyan, A.M., Belyi, V.I., Gel'fond, N.V. et al. Chemical Composition and Structure of Thin Films Produced by Chemical Vapor Deposition. Journal of Structural Chemistry 43, 556–580 (2002). https://doi.org/10.1023/A:1022084017202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022084017202

Keywords

Navigation