Skip to main content
Log in

Hydrothermal Synthesis and Structure of Organically Templated One‐Dimensional and Three‐Dimensional Iron Fluorophosphate

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new open‐framework iron fluorophosphates, [C4N2H12]0.5[FeF(HPO4)(H2PO4)] (I) [C4N2H12][Fe4F2(H2O)4(PO4)4] · 0.5H2O (II), were synthesized hydrothermally using piperazine as a templating agent. The structures were determined by single‐crystal X‐ray diffraction. Compound I crystallizes in the orthorhombic space group Pbca, a = 7.2126(2) Å, b = 14.2071(4) Å, c = 17.1338(2) Å, Z = 8. The structure is composed of infinite anionic chains of [FeF(HPO4)(H2PO4)]- n built by trans‐fluorine sharing FeF2O4 octahedra. These chains are similar to those found in tancoite‐type minerals. Compound II crystallizes in the monoclinic space group P21/n, a = 9.9045(3) Å, b = 12.3011(3) Å, c = 17.3220(4) Å, β = 103.7010(10)°, Z = 4. The structure of compound II has a three‐dimensional (3D) architecture with an eight‐membered channel along the b axis, in which protonated piperazine molecules reside. The complex framework is built from two types of secondary building unit (SBU): one hexamer [Fe3F2(H2O)2(PO4)3$] (SBU6), and one dimer [FeO4(H2O)2PO4] (SBU2). The vertex sharing between these SBUs create the 3D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Ertl, H. Knözinger and J. Weitkamp (eds.), Handbook of Heterogeneous Catalysis, VCH, Berlin (1997).

    Google Scholar 

  2. M. Hartmann and L. Kevan, Chem. Rev., 99, 635-663 (1999).

    Google Scholar 

  3. J. M. Thomas, Angew. Chem. Int. Ed., 38, 3588-3628 (1999).

    Google Scholar 

  4. A. K. Cheetham, T. Loiseau, and G. Férey, Angew. Chem. Int. Ed., 38, 3268-3292 (1999).

    Google Scholar 

  5. K. H. Lii, Y. F. Huang, V. Zima, et al., Chem. Mater., 10, 2599-2609 (1998).

    Google Scholar 

  6. M. Cavellec, D. Riou, and G. Férey, Inorg. Chim. Acta, 291, 317-325 (1999).

    Google Scholar 

  7. A. Choudhury, S. Natarajan, and C. N. R. Rao, Chem. Commun., 1305-1306 (1999).

  8. M. Cavellec, D. Riou, J-M. Grèneche, and G. Férey, Inorg. Chem., 36, 2187-2190 (1997).

    Google Scholar 

  9. M. Cavellec, D. Riou, and G. Férey, J. Solid State Chem., 112, 441-447 (1994).

    Google Scholar 

  10. M. R. Cavellec, J. M. Greeneche, D. Riou, and G. Férey, Chem. Mater., 10, 2434-2439 (1998).

    Google Scholar 

  11. M. Cavellec, D. Riou, C. Ninclaus, et al., Zeolites, 17, 250-260 (1996).

    Google Scholar 

  12. M. Cavellec, D. Riou, J. M. Grenèche, and G. Férey, J. Magn. Magn. Mat., 163, 173-183 (1996).

    Google Scholar 

  13. M. Cavellec, C. Egger, J. Linares, et al., J. Solid State Chem., 134, 349-355 (1997).

    Google Scholar 

  14. M. Cavellec, J. M. Grenèche, D. Riou, and G. Férey, Microporous Material, 8, 103-112 (1997).

    Google Scholar 

  15. M. Cavellec, J. M. Greneche, and G. Férey, Microporous and Mesoporous Material, 20, 45-52 (1998).

    Google Scholar 

  16. M. Cavellec, D. Riou, and G. Férey, Eur. J. Solid State Chem., 32, 271-281 (1995).

    Google Scholar 

  17. M. Cavellec, D. Riou, and G. Férey, Acta Crystallogr., C51, 2242-2244 (1995).

    Google Scholar 

  18. V. Zima and K. H. Lii, J. Chem. Soc. Dalton Trans., 4109-4112 (1998).

  19. Z. A. D. Lethbridge, P. Lightfoot, R. E. Morris, J. Solid State Chem., 142, 455-460 (1999).

    Google Scholar 

  20. J. R. D. DeBord, W. M. Reiff, R. C. Haushalter, and J. Zubieta, J. Solid State Chem., 125, 186-191 (1996).

    Google Scholar 

  21. K. H. Lii and Y. F. Huang, Chem. Commun., 1311-1312 (1997).

  22. V. Zima, K. H. Lii, N. Nguyen, and A. Ducouret, Chem. Mater., 10, 1914-1920 (1998).

    Google Scholar 

  23. A. Mgaidi, H. Boughzala, A. Driss, et al., J. Solid State Chem., 144, 163-168 (1999).

    Google Scholar 

  24. A. R. Cowley and A. M. Chipendale, J. Chem. Soc. Dalton Trans., 3425-3428 (2000).

  25. J. R. D. DeBord, W. M. Reiff, C. J. Warren, et al., Chem. Mater., 9, 1994-1998 (1997).

    Google Scholar 

  26. K. H. Lii and Y. F. Huang, Chem. Commun., 839-840 (1997).

  27. K. H. Lii and Y. F. Huang, J. Chem. Soc. Dalton Trans., 2221-2225 (1997).

  28. C. Y. Huans, S. L. Wang, and K. H. Lii, J. Porous Mater., 5, 147-152 (1998).

    Google Scholar 

  29. V. Zima and K. H. Lii, J. Solid State Chem., 139, 326-331 (1998).

    Google Scholar 

  30. A. Choudhury and S. Natarajan, Int. J. Inorg. Mater., 2, 217-223 (2000).

    Google Scholar 

  31. A. Choudhury and S. Natarajan, J. Solid State Chem., 154, 507-513 (2000).

    Google Scholar 

  32. A. Choudhury, Proc. Indian Acad. Sci. (Chem. Sci) (in press).

  33. M. K. Chaudhuri and S. Ghosh, J. Chem. Soc., Dalton Trans., 839-841 (1983).

  34. G. M. Sheldrick, SADABS Siemens Area Detector Absorption Correction Program, University of Göttingen (1994).

  35. G. M. Sheldrick, SHELXS-86 Program for Crystal Structure Determination, Univ. of Götingen (1986); Acta Crystallogr. A35, 467 (1990).

  36. G. M. Sheldrick, SHELXTL-PLUS Program for Crystal Structure Solution and Refinement, University of Göttingen (1993).

  37. F. C. Hawthorne, Tschermaks Mineral. Petroger. Mitt., 31, 121 (1983).

    Google Scholar 

  38. A. Ranganathan, V. R. Pedireddi, and C. N. R. Rao, J. Am. Chem. Soc., 120, 1752-1753 (1999).

    Google Scholar 

  39. J. M. Troup and A. Clearfield, Inorg. Chem., 16, 3311 (1977).

    Google Scholar 

  40. I. D. Brown and D. Altermatt, Acta. Crystallogr., B41, 244-247 (1984).

    Google Scholar 

  41. F. C. Hawthorne, Am. Mineral., 70, 455 (1985).

    Google Scholar 

  42. F. C. Hawthorne, Acta. Crystallogr., B50, 481-510 (1994).

    Google Scholar 

  43. M. P. Attfield, R. E. Morris, I. Burshtin, et al., J. Solid State Chem., 118, 412-416 (1995).

    Google Scholar 

  44. K. H. Lii and S. L. Wang, J. Solid State Chem., 128, 21-26 (1997).

    Google Scholar 

  45. H. M. Lin and K. H. Lii, Inorg. Chem., 37, 4220-4222 (1998).

    Google Scholar 

  46. R. I. Walton, F. Millange, D. O'Hare, et al., Chem. Mater., 12, 1979-1984 (2000).

    Google Scholar 

  47. R. I. Walton, F. Millange, A. Le Bail, et al., Chem. Commun., 203-204 (2000).

  48. F. Bonhomme, S. G. Thoma, and T. M. Nenoff, J. Mater. Chem., 11, 2559-2563 (2001).

    Google Scholar 

  49. P. B. Moore and T. Araki, Am. Mineral., 59, 964 (1974).

    Google Scholar 

  50. P. B. Moore and T. Araki, Am. Mineral., 62, 692 (1977).

    Google Scholar 

  51. F. Scordari, Tschermaks.,Min Mitt., 28, 315 (1981).

    Google Scholar 

  52. F. Scordari and G. Mileya, Jahrb. Mineral. Monatsh., 255 (1982).

  53. V. P. Balko and V. V. Bakakin, Zh. Strukt. Khim., 16, 837 (1975).

    Google Scholar 

  54. G. Férey, J. Fluorine Chem., 72, 187-193 (1995).

    Google Scholar 

  55. G. Férey, C. R. Acad. Sci, Ser. IIc, 1, 1-13 (1998).

    Google Scholar 

  56. G. Férey, Chem. Mater., 13, 3084-3098 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, A., Rao, C.N.R. Hydrothermal Synthesis and Structure of Organically Templated One‐Dimensional and Three‐Dimensional Iron Fluorophosphate. Journal of Structural Chemistry 43, 632–642 (2002). https://doi.org/10.1023/A:1022000620836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022000620836

Keywords

Navigation