Skip to main content
Log in

Grain Boundary Diffusion and Segregation in Interstitial Solid Solutions Based on BCC Transition Metals: Carbon in Niobium

  • Published:
Interface Science

Abstract

Bulk and grain boundary (GB) diffusion of 14C in Nb has been studied by the radiotracer serial sectioning technique. B and C kinetic regimes were realized for GB diffusion in the temperature range from 800 to 1173 K. The values of P = sδD gb, D gb and s follow the Arrhenius dependencies: P = 5.15 × 10−15 exp[−(83.1 kJ/mol)/RT] m3/s (973–1173 K), D gb = 2.3 × 10−6 exp[−(133.0 kJ/mol)/RT] m2/s (800–950 K), and s = 4.7 exp[(49.9 kJ/mol)/RT].

The increase in the GB diffusion compared with self-diffusion is very large despite the probable retardation effect due to the strong segregation.

The results for GB diffusion of C in Nb as well as for other interstitial solutes (P, S) in bcc transition metals (α- Fe, Mo) are discussed in the framework of the transition state theory. It is assumed that GB segregation decreases the energy of the ground state whereas the change in the diffusion mechanism (e.g. from vacancy to interstitial) leads to a strong decrease of the transition state energy. This change in the diffusion mechanism results in a fast GB diffusion of interstitial solutes in spite of their large tendency to segregate to GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.Z. Bokshtein, S.S. Ginzburg, S.T. Kishkin, and L.M. Moroz, Electron-microscopical autoradiography in metallurgy. Metallurgiya, Moscow, 1978 (in Russian).

    Google Scholar 

  2. S.Z. Bokshtein, S.S. Ginzburg, S.T. Kishkin, I.M. Razumovskii, and G.B. Stroganov, Autoradiography of internal interfaces and structural stability of alloys. Metallurgiya, Moscow, 1987 (in Russian).

    Google Scholar 

  3. Y. Mishin and Chr. Herzig, Mater. Sci. Engng. A 260, 55 (1999).

    Google Scholar 

  4. T. Surholt, C. Minkvitz, and Chr. Herzig, Acta mater. 46, 1849 (1998).

    Google Scholar 

  5. J. Bernardini and P. Gas, Def. Dif. Forum 95-98, 393 (1993).

    Google Scholar 

  6. J. Bernardini, Def. Dif. Forum 66-69, 667 (1989).

    Google Scholar 

  7. B.S. Bokstein, V.E. Fradkov, and D.L. Beke, Phil. Mag. A 65, 277 (1992).

    Google Scholar 

  8. P. Gas, S. Poize, and J. Bernardini, Acta Met. 34, 359 (1986).

    Google Scholar 

  9. B.S. Bokstein, G.S. Nikolsky, and A.N. Smirnov, Phys. Met. Metallogr. 8, 140 (1991) (in Russian).

    Google Scholar 

  10. F. Moya and G.E. Moya-Gontier, J. Phys. C 4, 157 (1975).

    Google Scholar 

  11. L.G. Harrison, Trans. Faraday Soc. 57, 1191 (1961).

    Google Scholar 

  12. G. Martin and B. Perraillon, Proc. ASM (Metals Park, N.-Y., 1980), p. 239.

  13. A. Atkinson and R.I. Taylor, Phil. Mag. A 45, 583 (1982).

    Google Scholar 

  14. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interface Boundary Diffusion (Wiley, Chichester, N.-Y., 1995).

  15. Chr. Herzig, J. Geise, and Y. Mishin, Acta Met. Mat. 41, 1683 (1993).

    Google Scholar 

  16. T. Surholt, Y. Mishin, and Chr. Herzig, Phys. Rev. B 50, 3577 (1994).

    Google Scholar 

  17. S. Divinski, M. Lohmann, and Chr. Herzig, Acta Mat. 49, 249 (2001).

    Google Scholar 

  18. M. Koppers, Y. Mishin, and Chr. Herzig, Acta Met. Mat. 42, 2859 (1994).

    Google Scholar 

  19. I. Razumovskii, Y. Mishin, and Chr. Herzig, Mater. Sci. Engng. 212, 45 (1996).

    Google Scholar 

  20. Y. Mishin and I. Razumovskii, Acta Met. 40, 597 (1992).

    Google Scholar 

  21. E. Budke, Chr. Herzig, and H. Wever, Phys. Status Solidi 127a,87 (1991).

    Google Scholar 

  22. A.D. Le Claire in Landolt-Bornstein, New Series, III/26, edited by H. Mehrer (Springer-Verlag, Berlin, 1990), p. 626.

    Google Scholar 

  23. L.B. Vasiljonok, B.S. Bokstein, E.N. Kablov, and I.M. Razumovskii, Dokl. Akad. Nauk (Reports of Russian Ac. Sc.) 375, 184 (2000) (in Russian).

    Google Scholar 

  24. R. Resnick and L.S. Castleman, Trans. AIME 218, 307 (1960).

    Google Scholar 

  25. B. Lesage and A.M. Hunt, Mem. Sci. Rev. Met. 73, 19 (1976).

    Google Scholar 

  26. P. Gruzin, V.V. Mural, and A.P. Fokin, Phys. Met. Metallogr. 34, 209 (1972).

    Google Scholar 

  27. P. Quiraldenq and P. Lacombe, Acta Met. 13, 51 (1965).

    Google Scholar 

  28. W. Gust, S. Mayer, A. Bogel, and B. Predel, J. Physique 46, C4–537 (1985).

    Google Scholar 

  29. S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes (N.-Y. and London, 1941).

  30. E.D. Hondros and M.P. Seah, Int. Met. Rev. 222, 262 (1977).

    Google Scholar 

  31. M.P. Seah, J. Phys. F. 10, 1043 (1980).

    Google Scholar 

  32. V.T. Borisov, V.M. Golikov, and G. Scherbedinsky, Phys. Met. Metallogr. 17, 80 (1964) (in Russian).

    Google Scholar 

  33. D. Gupta, Met. Trans. A 8, 1431 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokstein, B., Razumovskii, I. Grain Boundary Diffusion and Segregation in Interstitial Solid Solutions Based on BCC Transition Metals: Carbon in Niobium. Interface Science 11, 41–49 (2003). https://doi.org/10.1023/A:1021526705550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021526705550

Navigation