Skip to main content
Log in

Photostability of Cy3 and Cy5-Labeled DNA in the Presence of Metallic Silver Particles

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We examined the photostability of a double-stranded DNA oligomer, covalently labeled with Cy3 or Cy5 on one strand, in the presence of metallic silver island films. In our experimental configuration a minor fraction of the labeled DNA was close to the silver particles and the remainder was distant from the particles. Proximity of the fluorophores to silver island films resulted in increased intensity. Upon continuous illumination we found a fraction of the emission that was resistant to the photobleaching. The emission spectra of the residual fractions were identical to the initial spectra. The frequency-domain lifetime measurements of this fraction revealed greatly shortened decay times. These results are consistent with the photostable fraction being close to the silver particles. This results suggest that the number of photons detected per fluorophore, prior to photobleaching, can be increased 5-fold or more by proximity to silver particles. Localization at an optimal distance from the silver surface may result in larger enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Yershov, V. Barsky, A. Belgovskiy, E. Kirillov, E. Kreindlin, I. Ivanov, S. Parinov, D. Guschin, A. Drobishev, S. Dubiley, and A. Mirzabekov (1996) DNA analysis and diagnostics on oligonucleotide microchips,Proc. Natl. Acad. Sci. 93,4913–4918.

    Google Scholar 

  2. R. B. Thompson (Ed.) (1997) Advances in Fluorescence Sensing Technology III,SPIE Proc., 2980,1–582.

  3. P. O. Brown and D. Botstein (1999) Exploring the new world of the genome with DNA microarrays,Nature Genet. Suppl. 21, 33–37.

    Google Scholar 

  4. M. Schena, R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998) Microarrays: Biotechnology's discovery platform for functional genomics,TIB Tech. 16,301–306.

    Google Scholar 

  5. S. A. Soper, H. L. Nutter, R. A. Keller, L. M. Davis, and E. B. Shera (1993) The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy,Pho-tochem. Photobiol. 57, 972–977.

    Google Scholar 

  6. W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. Van Orden, J. H. Werner, and R. A. Keller (1999) Single molecule fluorescence spectroscopy at ambient temperature,Chem. Rev. 99,2929–2956.

    Google Scholar 

  7. J. R. Lakowicz (2001) Radiative decay engineering: Biophysical and biomedical applications,Anal. Biochem. 298,1–24.

    Google Scholar 

  8. J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski (2002) Radiative decay engineering,Anal.Biochem. 301,261–277.

    Google Scholar 

  9. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D'Auria, and I. Gryczyn-ski (2001) Intrinsic fluorescence from DNA can be enhanced by metallic particles,Biochem. Biophys. Res. Commun. 286,875–879.

    Google Scholar 

  10. M. Schena, R. A. Heller, T. P. Theriault, K. Konrad, E. Lachenmeier, and R. W. Davis (1998) Microarrays: biotechnology's discovery platform for functional genomics,Tibtech 16,301–306.

    Google Scholar 

  11. C. A. Harrington, C. Rosenow, and J. Retief (2000) Monitoring gene expression using DNA microarrays,Curr. Opin. Microbiol. 3,285–291.

    Google Scholar 

  12. F. Ni and T. M. Cotton (1986) Chemical procedure for preparing surface enhanced Raman scattering active silver films,Anal. Chem. 58,3159–3163.

    Google Scholar 

  13. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limke-man (1994) Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46,463–477.

    Google Scholar 

  14. D. A. Weitz and S. Garoff (1983) The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from mol-ecules adsorbed on a rough silver surface,J. Chem. Phys. 78,5324–5338.

    Google Scholar 

  15. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, (1993) Enhanced dye fluorescence over silver island films: analysis of the distance dependence,Molec. Phys. 80,1031–1046.

    Google Scholar 

  16. J. Gersten and A. Nitzan (1981) Spectroscopic properties of mole-cules interacting with small dielectric particles,J. Chem. Phys. 75,1139–1152.

    Google Scholar 

  17. H. Metiu (1984) Surface enhanced spectroscopy,Prog. Surface Sci. 17,153–320.

    Google Scholar 

  18. C. Mayer, N. Stich, T. Schalkhammer, and G. Bauer (2001) Slide-format proteomic biochips based on surface-enhanced nanocluster-resonance,J. Anal. Chem. 371,238–245.

    Google Scholar 

  19. W. F. Patton and J. M. Beechem (2001) Rainbow's end: the quest for multiplexed fluorescence analysis in proteomics,Curr. Opin. Chem. Biol. 6,63–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malicka, J., Gryczynski, I., Fang, J. et al. Photostability of Cy3 and Cy5-Labeled DNA in the Presence of Metallic Silver Particles. Journal of Fluorescence 12, 439–447 (2002). https://doi.org/10.1023/A:1021370111590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021370111590

Navigation