Skip to main content
Log in

Protein-protein interactions required during translation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Protein synthesis requires the involvement of numerous accessory factors that assist the ribosome in translation initiation, elongation, and termination. Extensive protein-protein and protein-RNA interactions are required to bring together the accessory factors, tRNAs, ribosomes, and mRNA into a productive complex and these interactions undergo dynamic alterations during each step of the translation initiation process. Initiation represents the most complex aspect of translation, requiring more accessory proteins, called initiation factors, than either elongation or termination. Not surprisingly, initiation is most often the rate-limiting step of translation and, as such, most (but not all) examples of translational regulation involve the regulation of protein-protein or protein-RNA interactions of the initiation complex. In this review, we focus on those interactions required for efficient translation initiation and how such interactions are regulated by developmental or environmental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, R.D., Browning, K.S., Dever, T.E., Lawson, T.G., Thach, R.E., Ravel, J.M. and Merrick, W.C. 1988. Initiation factors that bind mRNA. A comparison of mammalian factors with wheat germ factors. J. Biol. Chem. 263: 5462–5467.

    Google Scholar 

  • Altmann, M., Muller, P.P., Wittmer, B., Ruchti, F., Lanker, S. and Trachsel, H. 1993. A Saccharomyces cerevisiae homologue of mammalian translation initiation factor 4B contributes to RNA helicase activity. EMBO J. 12: 3997–4003.

    Google Scholar 

  • Altman, S. and Kirsebom, L. 1999. In: Gesteland, Raymond, F., Cech, Thomas R., Atkins, John F. (eds) Ribonuclease P. The RNA world: the nature of modern RNA suggests a prebiotic RNA, 2nd ed. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, 1999. Pp. 351–380.

    Google Scholar 

  • Asano, K., Krishnamoorthy, T., Phan, L., Pavitt, G.D. and Hinnebusch, A.G. 1999. Conserved bipartite motifs in yeast eIF5 and eIF2B?, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J. 18: 1673–1688.

    Google Scholar 

  • Baer, B.W. and Kornberg, R.D. 1980. Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Proc. Natl. Acad Sci. USA 77: 1890–1892.

    Google Scholar 

  • Baker, E.J. 1993. Control of poly(A) length. In: Belasco, J.G. and Brawerman, G. (eds), Control of Messenger RNA Stability. Academic Press, San Diego, CA. Pp. 367–415.

    Google Scholar 

  • Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Åresolution. Science 289: 905–920.

    Google Scholar 

  • Bandyopadhyay, A. and Maitra, U. 1999. Cloning and characterization of the p42 subunit of mammalian translation initiation factor 3 (eIF3): demonstration that eIF3 interacts with eIF5 in mammalian cells. Nucl. Acids Res. 27: 1331–1337.

    Google Scholar 

  • Barkan, A., Goldschmidt-Clermont, M. 2000. Participation of nuclear genes in chloroplast gene expression. Biochimie 82: 559–572.

    Google Scholar 

  • Beckmann, R.P., Mizzen, L.E. and Welch, W.J. 1990. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248: 850–854.

    Google Scholar 

  • Bi, X. and Goss, D.J. 2000. Wheat germ poly(A)-binding protein increases the ATPase and the RNA helicase activity of translation initiation factors eIF4A, eIF4B, and eIF-iso4F. J. Biol. Chem. 275: 17740–17746.

    Google Scholar 

  • Bi, X., Ren, J. and Goss, D.J. 2000. Wheat germ translation initiation factor eIF4B affects eIF4A and eIFiso4F helicase activity by increasing the ATP binding affinity of eIF4A. Biochem. 39: 5758–5765.

    Google Scholar 

  • Boorstein, W.R., Ziegelhoffer, T. and Craig, E.A. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38: 1–17.

    Google Scholar 

  • Browning, K.S. 1996. The plant translational apparatus. Plant Mol. Biol. 32: 107–144.

    Google Scholar 

  • Browning, K.S., Lax, S.R. and Ravel, J.M. 1987. Identification of two messenger RNA cap binding proteins in wheat germ. Evidence that the 28-kDa subunit of eIF-4B and the 26-kDa subunit of eIF-4F are antigenically distinct polypeptides. J. Biol. Chem. 262: 11228–11232.

    Google Scholar 

  • Browning, K.S., Fletcher, L., Lax, S.R. and Ravel, J.M. 1989. Evidence that the 59-kDa protein synthesis initiation factor from wheat germ is functionally similar to the 80-kDa initiation factor 4B from mammalian cells. J. Biol. Chem. 264: 8491–8494.

    Google Scholar 

  • Browning, K.S., Webster, C., Roberts, J.K. and Ravel, J.M. 1992. Identification of an isozyme form of protein synthesis initiation factor 4F in plants. J. Biol. Chem. 267: 10096–10100.

    Google Scholar 

  • Browning, K.S., Gallie, D.R., Hershey, J.W., Hinnebusch, A.G., Maitra, U., Merrick, W.C., Norbury, C. 2001. Unified nomenclature for the subunits of eukaryotic initiation factor 3. Trends Biochem. Sci. 26: 284.

    Google Scholar 

  • Bruick, R.K., Mayfield, S.P. 1999. Light-activated translation of chloroplast mRNAs. Trends Plant Sci. 4: 190–195.

    Google Scholar 

  • Burks, E.A., Bezerra, P.P., Le, H., Gallie, D.R. and Browning, K.S. 2001. Plant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit. J. Biol. Chem. 276: 2122–2131.

    Google Scholar 

  • Bushell, M., Wood, W., Clemens, M.J. and Morley, S.J. 2000. Changes in integrity and association of eukaryotic protein synthesis initiation factors during apoptosis. Eur J. Biochem. 267: 1083–1091.

    Google Scholar 

  • Bushell, M., Wood, W., Carpenter, G., Pain, V.M., Morley, S.J. and Clemens, M.J. 2001. Disruption of the interaction of mammalian protein synthesis initiation factor 4B with the poly(A) binding protein by caspase-and viral protease-mediated cleavages. J. Biol. Chem. 276: 23922–23928.

    Google Scholar 

  • Carberry, S.E. and Goss, D.J. 1991. Wheat germ initiation factors 4F and (iso)4F interact differently with oligoribonucleotide analogues of rabbit ?-globin mRNA. Biochem. 30: 4542–4545.

    Google Scholar 

  • Carberry, S.E., Darzynkiewicz, E. and Goss, D.J. 1991. A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochem. 30: 1624–1627.

    Google Scholar 

  • Cech, T.R. and Golden, B.L. 1999. In: Gesteland, Raymond F., Cech, Thomas R., Atkins, John F. (eds), Building a Catalytic Active Site Using Only RNA. The RNAWorld: The Nature of Modern RNA Suggests a Prebiotic RNA. 2nd ed. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, 1999. Pp. 321–349.

    Google Scholar 

  • Chaudhuri, J., Das, K. and Maitra, U. 1994. Purification and characterization of bacterially expressed mammalian translation initiation factor 5 (eIF-5): demonstration that eIF-5 forms a specific complex with eIF-2. Biochem. 33: 4794–4799.

    Google Scholar 

  • Chaudhuri, J., Si, K., Maitra, U. 1997. Function of eukaryotic translation initiation factor 1A (eIF1A) (formerly called eIF-4C) in initiation of protein synthesis. J. Biol. Chem. 272: 7883–7891.

    Google Scholar 

  • Chaudhuri, J., Chowdhury, D. and Maitra, U. 1999. Distinct functions of eukaryotic translation initiation factors eIF1A and eIF3 in the formation of the 40 S ribosomal preinitiation complex. J. Biol. Chem. 274: 17975–17980.

    Google Scholar 

  • Chen, J.-J. 2000. Heme-regulated eIF2? kinase. In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (eds), Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 529–546.

    Google Scholar 

  • Christensen, A.K., Kahn, L.E. and Bourne, C.M. 1987. Circular polysomes predominate on the rough endoplasmic reticulum of somatotropes and mammotropes in the rate anterior pituitary. Amer. J. Anat. 178: 1–10.

    Google Scholar 

  • Craig, A.W.B., Haghighat, A., Yu, A.T.K. and Sonenberg, N. 1998. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392: 520–523.

    Google Scholar 

  • Cuesta, R., Laroia, G. and Schneider, R.J. 2000. Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes. Genes Devel. 14: 1460–1470.

    Google Scholar 

  • Danon, A. 1997. Translational regulation in the chloroplast. Plant Physiol. 115: 1293–1298.

    Google Scholar 

  • Das, S., Maiti, T., Das, K. and Maitra, U. 1997. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the ?-subunit of eIF2. J. Biol. Chem. 272: 31712–31718.

    Google Scholar 

  • Dorris, D.R., Erickson, F.L. and Hannig E.M. 1995. Mutations in GCD11, the structural gene for eIF-2? in yeast, alter translational regulation of GCN4 and the selection of the start site for protein synthesis. EMBO J. 14: 2239–2249.

    Google Scholar 

  • Drawbridge, J., Grainger, J.L. and Winkler, M.W. 1990. Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis. Mol. Cell Biol. 10: 3994–4006

    Google Scholar 

  • Duncan, R. and Hershey, J.W. 1985. Regulation of initiation factors during translational repression caused by serum depletion. Covalent modification. J. Biol. Chem. 260: 5493–5497.

    Google Scholar 

  • Duncan, R.F. and Hershey, J.W. 1989. Protein synthesis and protein phosphorylation during heat stress, recovery, and adaptation. J. Cell Biol. 109: 1467–1481.

    Google Scholar 

  • Elliott, R., Pedersen, T.J., Fristensky, B., White, M.J., Dickey, L.F. and Thompson, W.F. 1989. Characterization of a single copy gene encoding ferredoxin 1 from pea. Plant Cell 1: 681–690.

    Google Scholar 

  • Erickson, F.L. and Hannig, E.M. 1996. Ligand interactions with eukaryotic translation initiation factor 2: role of the ?-subunit. EMBO J. 15: 6311–6320.

    Google Scholar 

  • Flynn, A. and Proud, C.G. 1995. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J. Biol. Chem. 270: 21684–21688.

    Google Scholar 

  • Flynn, A., Oldfield, S. and Proud, C.G. 1993. The role of the ?-subunit of initiation factor eIF-2 in initiation complex formation. Biochim. Biophys. Acta 1174: 117–121.

    Google Scholar 

  • Fraser, C.S., Pain, V.W. and Morley, S.J. 1999. The association of initiation factor 4F with poly(A)-binding protein is enhanced in serum-stimulated Xenopus kidney cells. J. Biol. Chem. 274: 196–204.

    Google Scholar 

  • Freire, M.A., Tourneur, C., Granier, F., Camonis, J., El Amrani, A., Browning, K.S., Robaglia, C. 2000. Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Mol. Biol. 44: 129–40.

    Google Scholar 

  • Futterer, J. and Hohn, T. 1991. Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO J. 10: 3887–3896.

    Google Scholar 

  • Gallie, D.R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Devel. 5: 2108–2116.

    Google Scholar 

  • Gallie, D.R. 1996. Translational control of cellular and viral mRNAs. Plant Mol. Biol. 32: 145–158.

    Google Scholar 

  • Gallie, D.R., Browning, K.S. 2001. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J. Biol. Chem. 276: 36951–36960.

    Google Scholar 

  • Gallie, D.R. and Tanguay, R. 1994. Poly(A) binds to initiation factors and increases cap-dependent translation in vitro. J. Biol. Chem. 269: 14465–14472.

    Google Scholar 

  • Gallie, D.R., Caldwell, C. and Pitto, L. 1995. Heat shock disrupts cap and poly(A) tail function during translation and increases mRNA stability of introduced reporter mRNA. Plant Physiol. 108: 1703–1713.

    Google Scholar 

  • Gallie, D.R., Le, H., Caldwell, C., Tanguay, R.L., Hoang, N.X. and Browning, K.S. 1997. The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272: 1046–1053

    Google Scholar 

  • Gallie, D.R., Ling, J., Niepel, M., Morley, S.J. and Pain, V.M. 2000. The role of 5?-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes. Nucl. Acids Res. 28: 2943–2953.

    Google Scholar 

  • Garcia-Barrio, M.T., Naranda, T., Vazquez de Aldana, C.R., Cuesta, R., Hinnebusch, A.G., Hershey, J.W. and Tamame, M. 1995. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Devel. 9: 1781–1796.

    Google Scholar 

  • Gorlach, M., Burd, C.G. and Dreyfuss, G. 1994. The mRNA poly(A)-binding protein: localization, abundance, and RNAbinding specificity. Exp. Cell Res. 211: 400–407.

    Google Scholar 

  • Goyer, C., Altmann, M., Lee, H.S., Blanc, A., Deshmukh, M., Woolford, J.L., Trachsel, H. and Sonenberg, N. 1993. TIF4631 and TIF4632-Two yeast genes encoding the high-molecular-weight subunits of the cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA recognition motif-like sequence and carry out an essential function. Mol. Cell Biol. 13: 4860–4874.

    Google Scholar 

  • Gradi, A., Imataka, H., Svitkin, Y.V., Rom, E., Raught, B., Morino, S. and Sonenberg, N. 1998. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell Biol. 18: 334–342.

    Google Scholar 

  • Gray, N.K. and Hentze, M.W. 1994. Iron regulatory protein prevents binding of the 43 S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13(16): 3882–3891.

    Google Scholar 

  • Grifo, J.A., Abramson, R.D., Satler, C.A. and Merrick, W.C. 1984. RNA-stimulated ATPase activity of eukaryotic initiation factors. J. Biol. Chem. 259: 8648–8654.

    Google Scholar 

  • Hershey, J.W.B. and Merrick, W.C. 2000. The pathway and mechanism of initiation of protein synthesis. In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (eds.), Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 33–88.

    Google Scholar 

  • Hershey, P.E., McWhirter, S.M., Gross, J.D., Wagner, G., Alber, T., Sachs, A.B. 1999. The cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J. Biol. Chem. 274: 21297–21304.

    Google Scholar 

  • Hinnebusch, A.G. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (eds) Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 185–243.

    Google Scholar 

  • Horton, L.E., James, P., Craig, E.A. and Hensold, J.O. 2001. The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. J. Biol. Chem. 276: 14426–14433.

    Google Scholar 

  • Hoshino, S., Imai, M., Kobayashi, T., Uchida, N., Katada, T. 1999. The eukaryotic polypeptide chain releasing factor (eRF3/GSPT) carrying the translation termination signal to the 3?-poly(A) tail of mRNA. Direct association of ERF3/GSPT with polyadenylate-binding protein. J. Biol. Chem. 274: 16677–16680.

    Google Scholar 

  • Iizuka, N., Najita, L., Franzusoff, A. and Sarnow, P. 1994. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol. Cell Biol. 14: 7322–7330.

    Google Scholar 

  • Imataka, H. and Sonenberg, N., 1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell Biol. 17: 6940–6947.

    Google Scholar 

  • Imataka, H., Gradi, A. and Sonenberg, N. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17: 7480–7489.

    Google Scholar 

  • James, P., Pfund, C. and Craig, E.A. 1997. Functional specificity among Hsp70 molecular chaperones. Science 275: 387–389.

    Google Scholar 

  • Jaramillo, M., Dever, T.E., Merrick, W.C. and Sonenberg, N. 1991. RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B. Mol. Cell Biol. 11: 5992–5997.

    Google Scholar 

  • Joshi, B., Yan, R. and Rhoads, R.E. 1994. In vitro synthesis of human protein synthesis initiation factor 4? and its localization on 43 and 48 S initiation complexes. J. Biol. Chem. 269: 2048–2055.

    Google Scholar 

  • Joshi, B., Cai, A.L., Keiper, B.D., Minich, W.B., Mendez, R., Beach, C.M., Stepinski, J., Stolarski, R., Darzynkiewicz, E. and Rhoads, R.E. 1995. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J. Biol. Chem. 270: 14597–14603.

    Google Scholar 

  • Joyce, G.F. 1999. Reactions catalyzed by RNA and DNA enzymes. In: The RNA World: the Nature of Modern RNA Suggests a Prebiotic RNA. 2nd ed. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, 1999. Pp. 687–690.

    Google Scholar 

  • Joyce, G.F. and Orgel, L.E. 1999. Prospects for understanding the origin of the RNA world. In: Gesteland, Raymond F., Cech, Thomas R., Atkins, John F. (eds), The RNA World: the Nature of Modern RNA Suggests a prebiotic RNA. 2nd ed. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, 1999. Pp. 49–77.

    Google Scholar 

  • Kaufman, R.J. 2000. The double-stranded RNA-activated protein kinase PKR. In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (eds.), Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 503–527.

    Google Scholar 

  • Kessler, S.H. and Sachs, A.B. 1998. RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol. Cell Biol. 18: 51–57.

    Google Scholar 

  • Khaleghpour, K., Kahvejian, A., De Crescenzo, G., Roy, G., Svitkin, Y.V., Imataka, H., O'Connor-McCourt, M. and Sonenberg, N. 2001a. Dual interactions of the translational repressor Paip2 with poly(A) binding protein. Mol. Cell Biol. 21: 5200–5213.

    Google Scholar 

  • Khaleghpour, K., Svitkin, Y.V, Craig, A.W., DeMaria, C.T., Deo, R.C., Burley, S.K. and Sonenberg, N. 2001b. Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol. Cell 7: 205–216.

    Google Scholar 

  • Kim, C.Y., Takahashi, K., Nguyen, T.B., Roberts, J.K. and Webster, C. 1999. Identification of a nucleic acid binding domain in eukaryotic initiation factor eIFiso4G from wheat. J. Biol. Chem. 274: 10603–10608.

    Google Scholar 

  • Korneeva, N.L., Lamphear, B.J., Hennigan, F.L. and Rhoads, R.E. 2000. Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J. Biol. Chem. 275: 41369–41376.

    Google Scholar 

  • Korneeva, N.L., Lamphear, B.J., Hennigan, F.L., Merrick, W.C. and Rhoads, R.E. 2001. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem. 276: 2872–2879.

    Google Scholar 

  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292.

    Google Scholar 

  • Kozlov, G., Trempe, J.F., Khaleghpour, K., Kahvejian, A., Ekiel, I., Gehring, K. 2001. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc. Natl. Acad Sci. USA 98: 4409–4413.

    Google Scholar 

  • Kuhn, U. and Pieler, T. 1996. Xenopus poly(A) binding protein: functional domains in RNA binding and protein-protein interaction. J. Mol. Biol. 256: 20–30

    Google Scholar 

  • Lamphear, B.J., Kirchweger, R., Skern, T. and Rhoads, R.E. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases-Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270: 21975–21983.

    Google Scholar 

  • Langland, J.O., Jin, S., Jacobs, B.L. and Roth, D.A. 1995. Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol. 108: 1259–1267.

    Google Scholar 

  • Langland, J.O., Langland, L.A., Browning, K.S. and Roth, D.A. 1996. Phosphorylation of plant eukaryotic initiation factor-2 by the plant-encoded double-stranded RNA-dependent protein kinase, pPKR, and inhibition of protein synthesis in vitro. J. Biol. Chem. 271: 4539–4544.

    Google Scholar 

  • Lawson, T.G., Lee, K.A., Maimone, M.M., Abramson, R.D., Dever, T.E., Merrick, W.C. and Thach R.E. 1989. Dissociation of double-stranded polynucleotide helical structures by eukaryotic initiation factors, as revealed by a novel assay. Biochem. 28: 4729–4734.

    Google Scholar 

  • Lax, S., Fritz, W., Browning, K. and Ravel, J. 1985. Isolation and characterization of factors from wheat germ that exhibit eukaryotic initiation factor 4B activity and overcome 7-methylguanosine 5?-triphosphate inhibition of polypeptide synthesis. Proc. Natl. Acad Sci. USA 82: 330–333.

    Google Scholar 

  • Lax, S., Browning, K.S., Maia, D.M. and Ravel, J.M. 1986. ATPase activities of wheat germ initiation factors 4A, 4B, and 4F. J. Biol. Chem. 261: 15632–15636.

    Google Scholar 

  • Le, H., Chang, S.-C., Tanguay, R.L. and Gallie, D.R. 1997a. The wheat poly(A)-binding protein functionally complements Pab1p in yeast. Eur. J. Biochem. 243: 350–357.

    Google Scholar 

  • Le, H., Tanguay, R.L., Balasta, M.L., Wei, C-C., Browning, K.S., Metz, A.M., Goss, D.J. and Gallie, D.R. 1997b. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272: 16247–16255

    Google Scholar 

  • Le, H., Browning, K.S. and Gallie, D.R. 1998. The phosphorylation state of the wheat translation initiation factors eIF4B, eIF4A, and eIF2 is differentially regulated during seed development and germination. J. Biol. Chem. 273: 20084–20089

    Google Scholar 

  • Le, H., Browning, K.S. and Gallie, D.R. 2000. The phosphorylation state of poly(A)-binding protein specifies its binding to poly(A) RNA and its interaction with eukaryotic initiation factor (eIF) 4F, eIFiso4F, and eIF4B. J. Biol. Chem. 275: 17452–17462.

    Google Scholar 

  • Li, W., Belsham, G.J., Proud, C.G. 2001. Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo. J. Biol. Chem. 276: 29111–29115.

    Google Scholar 

  • Lin, T.-A., Kong, X., Haystead, T.A.J., Pause, A., Belsham, G., Sonenberg, N. and Lawrence, J.C. 1994. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266: 653–656.

    Google Scholar 

  • Ling, J., Wells, D.R., Tanguay, R.L., Dickey, L.F., Thompson, W.F. and Gallie, D.R. 2000. Heat shock protein HSP101 binds to the Fed-1 internal light regulatory element and mediates its high translational activity. Plant Cell 12: 1213–1228.

    Google Scholar 

  • Luo, Y. and Goss, D.J. 2001. Homeostasis in mRNA initiation: wheat germ poly(A)-binding protein lowers the activation energy barrier to initiation complex formation. J. Biol. Chem. 276: 43083–43086.

    Google Scholar 

  • Mader, S., Lee, H., Pause, A. and Sonenberg, N. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell Biol. 15: 4990–4997.

    Google Scholar 

  • Manzella, J.M., Rychlik, W., Rhoads, R.E., Hershey, J.W. and Blackshear, P.J. 1991. Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J. Biol. Chem. 266: 2383–2389.

    Google Scholar 

  • Marcotrigiano, J., Gingras, A.C., Sonenberg, N. and Burley, S.K. 1997. Cocrystal structure of the messenger RNA 5? cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89: 951–961.

    Google Scholar 

  • Marcotrigiano, J., Gingras, A.C., Sonenberg, N. and Burley, S.K. 1999. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3: 707–716.

    Google Scholar 

  • McKay, D.B. and Wedekind, J.E. 1999. In: Gesteland, Raymond F., Cech, Thomas R., Atkins, John F. (eds), Small ribozymes. The RNA World: the Nature of Modern RNA Suggests a Prebiotic RNA. 2nd ed. Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press, 1999. Pp. 265–286.

    Google Scholar 

  • Methot, N., Song, M.S. and Sonenberg, N. 1996. A region rich in aspartic acid, arginine, tyrosine, and glycine (DRYG) mediates eukaryotic initiation factor 4B (eIF4B) self-association and interaction with eIF3. Mol. Cell Biol. 16: 5328–5334.

    Google Scholar 

  • Metz, A.M. and Browning, K.S. 1997. Assignment of the ?-subunit of wheat eIF2 by protein and DNA sequence analysis and immunoanalysis. Arch Biochem. Biophys. 342: 187–189.

    Google Scholar 

  • Minich, W.B., Balasta, M.L., Goss, D.J. and Rhoads, R.E. 1994. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl. Acad Sci. USA 91: 7668–72.

    Google Scholar 

  • Muckenthaler, M., Gray, N.K. and Hentze, M.W. 1998. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell. 2: 383–388.

    Google Scholar 

  • Naranda, T., MacMillan, S.E., Donahue, T.F. and Hershey, J.W. 1996. SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol. Cell Biol. 16: 2307–2313.

    Google Scholar 

  • Neff, C.L. and Sachs, A.B. 1999. Eukaryotic translation initiation factors 4G and 4A from Saccharomyces cerevisiae interact physically and functionally. Mol. Cell Biol. 19: 5557–5564.

    Google Scholar 

  • Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. and Craig, E.A. 1992. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71: 97–105.

    Google Scholar 

  • Nissen, P., Hansen, J., Ban, N., Moore, P.B. and Steitz, T.A. 2000. The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930.

    Google Scholar 

  • Otero, L.J., Ashe, M.P. and Sachs, A.B. 1999. The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J. 18: 3153–3163.

    Google Scholar 

  • Pain, V.M. 1994. Translational control during amino acid starvation. Biochimie 76: 718–728.

    Google Scholar 

  • Pain, V.M., 1996. Initiation of protein synthesis in eukaryotic cells. Eur. J. Biochem. 236: 747–771.

    Google Scholar 

  • Palade, G. 1955. A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1: 59–67.

    Google Scholar 

  • Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science 189: 347–358.

    Google Scholar 

  • Park, H.S., Himmelbach, A., Browning, K.S., Hohn, T. and Ryabova, L.A. 2001. A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106: 723–733.

    Google Scholar 

  • Pause, A., Belsham, G., Gingras, A.-C., Donze, O., Lin, T.-A., Lawrence, J.C. and Sonenberg, N. 1994. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5?-cap function. Nature 371: 762–777.

    Google Scholar 

  • Pestova, T.V., Shatsky, I.N. and Hellen, C.U. 1996. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43 S preinitiation complexes. Mol. Cell Biol. 16: 6870–6878.

    Google Scholar 

  • Pestova, T.V., Borukhov, S.I. and Hellen, C.U. 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394: 854–859.

    Google Scholar 

  • Petracek, M.E., Dickey, L.F., Nguyen, T.-T., Gatz, C., Sowinski, D.A., Allen, G.C. and Thompson, W.F. 1998. Ferredoxin-1 mRNA is destabilized by changes in photosynthetic electron transport. Proc. Natl. Acad Sci. USA 95: 9009–9013.

    Google Scholar 

  • Pfund, C., Lopez-Hoyo, N., Ziegelhoffer, T., Schilke, B.A., Lopez-Buesa, P., Walter, W.A., Wiedmann, M. and Craig, E.A. 1998. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17: 3981–3989.

    Google Scholar 

  • Phan, L., Zhang, X.L., Asano, K., Anderson, J., Vornlocher, H.P., Greenberg, J.R., Qin, J. and Hinnebusch, A.G. 1998. Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol. Cell Biol. 18: 4935–4946.

    Google Scholar 

  • Piron, M., Vende, P., Cohen, J. and Poncet, D. 1998. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J. 17: 5811–5821.

    Google Scholar 

  • Piron, M., Delaunay, T., Grosclaude, J. and Poncet, D. 1999. Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J. Virol. 73: 5411–5421.

    Google Scholar 

  • Poncet, D., Aponte, C. and Cohen, J. 1993. Rotavirus protein NSP3 (NS34) is bound to the 3? end consensus sequence of viral mRNAs in infected cells. J. Virol. 67: 3159–3165.

    Google Scholar 

  • Poulin, F., Gingras, A.C., Olsen, H., Chevalier, S. and Sonenberg, N. 1998. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273: 14002–14007.

    Google Scholar 

  • Pyronnet, S., Imataka, H., Gingras, A.C., Fukunaga, R., Hunter, T. and Sonenberg, N. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J. 18: 270–279.

    Google Scholar 

  • Raught, B., Gingras, A.-C., Gygi, S.P., Imataka, H., Morino, S., Gradi, A., Aebersold, R. and Sonenberg, N. 2000. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 19: 434–444.

    Google Scholar 

  • Ray, B.K., Lawson, T.G., Kramer, J.C., Cladaras, M.H., Grifo, J.A., Abramson, R.D., Merrick, W.C. and Thach, R.E. 1985. ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J. Biol. Chem. 260: 7651–7658.

    Google Scholar 

  • Rochaix, J.D. 1996. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Plant Mol. Biol. 32: 327–341.

    Google Scholar 

  • Ron, D. and Harding, H.P. 2000. PERK and translational control by stress in the endoplasmic reticulum. In: Sonenberg, N., Hershey, J.W.B. and Mathews, M.B. (eds), Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 547–560.

    Google Scholar 

  • Rouault, T.A. and Harford, J.B. 2000. Translational control of ferritin synthesis. In: Sonenberg, N., Hershey, J.W.B., Mathews, M.B. (eds), Translational Control of Gene Expression, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Pp. 655–670.

    Google Scholar 

  • Rozen, F., Edery, I., Meerovitch, K., Dever, T.E., Merrick, W.C. and Sonenberg, N. 1990. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell Biol. 10: 1134–1144.

    Google Scholar 

  • Sachs, A.B., Davis, R.W. and Kornberg, R.D. 1987. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell Biol. 7: 3268–3276

    Google Scholar 

  • Scheper, G.C., van Kollenburg, B., Hu, J., Luo, Y., Goss, D.J. and Proud, C.G. 2001. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem., in press.

  • Scholthof, H.B., Gowda, S., Wu, F.C. and Shepherd, R.J. 1992. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI. J. Virol. 66: 3131–3139.

    Google Scholar 

  • Schuler, G.D., Altschul, S.F. and Lipman, D.J. 1991. A workbench for multiple alignment construction and analysis. Proteins 9: 180–190.

    Google Scholar 

  • Smith, B.L., Gallie, D.R., Le, H. and Hansma, P.K. 1997. Visualization of poly(A)-binding protein complex formation with poly(A) RNA using atomic force microscopy. J. Struc. Biol. 119: 109–117.

    Google Scholar 

  • Somanchi, A., Mayfield, S.P. 1999. Nuclear-chloroplast signalling. Curr. Opin. Plant Biol. 2: 404–409.

    Google Scholar 

  • Sonenberg, N. 1996. mRNA 5? cap-binding protein eIF4E and control of cell growth. In: Translational Control, Hershey, J.W.B., Mathews, M.B., and Sonenberg, N. eds. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp. 249–269.

    Google Scholar 

  • Stambuk, R.A. and Moon, R.T. 1992. Purification and characterization of recombinant Xenopus poly(A)(+)-binding protein expressed in a baculovirus system. Biochem. J. 287: 761–766.

    Google Scholar 

  • Tarun, S.Z. and Sachs, A.B. 1995. A common function for mRNA 5? and 3? ends in translation initiation in yeast. Genes Devel. 9: 2997–3007.

    Google Scholar 

  • Tarun, S.Z. and Sachs, A.B. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15: 7168–7177.

    Google Scholar 

  • Tarun, S.Z., Wells, S.E., Deardorff, J.A. and Sachs, A.B. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl. Acad Sci. USA 94: 9046–9051.

    Google Scholar 

  • Vende, P., Piron, M., Castagne, N. and Poncet, D. 2000. Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3? end. J. Virol. 74: 7064–7071.

    Google Scholar 

  • Vornlocher, H.P., Hanachi, P., Ribeiro, S., Hershey, J.W. 1999. A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J. Biol. Chem. 274: 16802–16812.

    Google Scholar 

  • Wei, C-C., Balasta, M.L., Ren, J. and Goss, D.J. 1998. Wheat germ poly(A) binding protein enhances the binding affinity of eukaryotic initiation factor 4F and (iso)4F for cap analogues. Biochem. 37: 1910–1916.

    Google Scholar 

  • Wek, R.C. 1994. eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem. Sci. 19: 491–496.

    Google Scholar 

  • Wells, D.R., Tanguay, R.L., Le, H. and Gallie, D.R. 1998a. HSP101 functions as a specific translational regulatory protein whose activity is regulated by nutrient status. Genes Devel. 12: 3236–3251.

    Google Scholar 

  • Wells, S.E., Hillner, P.E., Vale, R.D. and Sachs, A.B. 1998b. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135–140

    Google Scholar 

  • Zelus, B.D., Giebelhaus, D.H., Eib, D.W., Kenner, K.A. and Moon, R.T. 1989. Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell Biol. 9: 2756–2760.

    Google Scholar 

  • Zhong, T. and Arndt, K.T. 1993. The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73: 1175–1186.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallie, D.R. Protein-protein interactions required during translation. Plant Mol Biol 50, 949–970 (2002). https://doi.org/10.1023/A:1021220910664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021220910664

Navigation