Skip to main content
Log in

Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The Al–Cu–Mg–Si alloying system is a base for a diverse group of commercial alloys which acquire their properties after quenching and aging. Therefore, the knowledge of the phase composition of hardening precipitates and the conditions under which they are formed is very important. ast reference data were analyzed along with experimental results and calculations of phase equilibria. Different alloys were compared based on the composition of the supersaturated solid solution. It is shown that the phase composition of aging products in alloys with Mg : Si > 1 agrees well with the equilibrium phase composition at a temperature of annealing. However, the sequence of precipitation in the alloys with Mg : Si < 1 is more complicated. The hardening in these alloys occurs with precipitation of the β″ and θ′ phases and their precursors. The former phase may contain copper and later transforms either to β′ and β (Mg2Si) or to Q phase depending on the amount of copper and annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Jena, A. K. Gupta and M. C. Chaturvedi, Metall. Trans. A 24A (1993) 2181.

    Google Scholar 

  2. D. G. Eskin, Z. Metallkde. 86 (1995) 60.

    Google Scholar 

  3. C. R. Hutchinson and S. P. Ringer, Metall. Mater. Trans. A 31A (2000) 2721.

    Google Scholar 

  4. D. G. Eskin, Z. Metallkde. 83 (1992) 762.

    Google Scholar 

  5. D. G. Eskin, V. Massardier and P. Merle, J. Mater. Sci. 34 (1999) 811.

    Google Scholar 

  6. A. Charai, T. Walther, C. Alfonso, A.-M. Zahra and C. Y. Zahra, Acta Mater. 48 (2000) 2751.

    Google Scholar 

  7. S. Hirosawa, T. Sato, A. Kamio and H. M. Flower, ibid. 48 (2000) 1797.

    Google Scholar 

  8. S. P. Ringer and K. Hono, Mater. Characteriz. 44 (2000) 101.

    Google Scholar 

  9. W. K. Armitage, J. Inst. Met. 25 (1970) 46.

    Google Scholar 

  10. D. G. Eskin, V. S. Zolotorevskii, V. V. Istominkastrovskii and A. A. Aksenov, Russ. Metall. (2) (1989) 111.

    Google Scholar 

  11. V. S. Zolotorevskii, V. V. Istominkastrovskii and D. G. Eskin, ibid. (6) (1987) 89.

    Google Scholar 

  12. J. M. Silcock, T. J. Heal and H. K. Hardy, J. Inst. Met. 82 (1953/1954) 239.

    Google Scholar 

  13. L. F. Mondolfo, “Aluminium Alloys: Structure and Properties” (Butterworths, Boston, 1979).

    Google Scholar 

  14. A. A. Alekseev, Phys. Met. Metallogr. 75 (1993) 279.

    Google Scholar 

  15. K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio and S. Ikeno, J. Mater. Sci. 35 (2000) 179.

    Google Scholar 

  16. N. Maruyama, R. Uemori, N. Hashimoto, M. Saga and M. Kikuchi, Scr. Mater. 36 (1997) 89.

    Google Scholar 

  17. L. Zhen, W. D. Fei, S. B. Kang and H. W. Kim, J. Mater. Sci. 32 (1997) 1895.

    Google Scholar 

  18. D. L. Zhang and D. H. Stjohn, in Proceedings of the International Conference on Aluminum and Magnesium for Automotive Applications, Cleveland, Ohio, 1995 (TMS/AIME,Warrendale, 1996) p. 3.

  19. K. Matsuda, Y. Uetani, T. Sato and S. Ikeno, Metall. Mater. Trans. A 32A (2001) 1293.

    Google Scholar 

  20. M. Murayama and K. Hono, Acta Mater. 47 (1999) 1537.

    Google Scholar 

  21. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Couper, ibid. 48 (1998) 3893.

    Google Scholar 

  22. S. J. Andersen, H. W. Zandbergen, J. Jansen, C. Træholt, U. Tundal and O. Reiso, ibid. 46 (1998) 3283.

    Google Scholar 

  23. J. P. Lynch, L. M. Brown and M. H. Jacobs, Acta Metall. 30 (1982) 1389.

    Google Scholar 

  24. K. Matsuda, S. Ikeno, T. Sato and A. Kamio, Mater. Sci. Forum 217–222 (1996) 707.

    Google Scholar 

  25. K. Matsuda, S. Tada, S. Ikeno and A. Kamio, in Proceedings of the 4th International Conference on Aluminum Alloys (ICAA'4), Atlanta, 1994, edited by T. H. Sanders, Jr. and A. Starke, Jr. (Georgia Institute of Technology, Atlanta, 1994) p. 598.

    Google Scholar 

  26. L. Sagalowicz, G. Lapasset and G. Hug, Phil. Mag. Lett. 74 (1996) 57.

    Google Scholar 

  27. A. K. Gupta, D. J. Lloyd and S. A. Court, Mater. Sci. Eng. A 301A (2001) 140.

    Google Scholar 

  28. W. F. Miao and D. E. Laughlin, Scr. Mater. 40 (1999) 873.

    Google Scholar 

  29. M. Murayama, K. Hono, W. F. Miao and D. E. Laughlin, Metall. Mater. Trans. A 32A (2001) 239.

    Google Scholar 

  30. G. Phragmen, J. Inst. Met. 77 (1950) 489.

    Google Scholar 

  31. L. Arnberg and B. Aurivillius, Acta Chem. Scand. A 34 (1980) 1.

    Google Scholar 

  32. C. Wolverton, Acta Mater. 49 (2001) 3129.

    Google Scholar 

  33. C. Cayron, L. Sagalowicz, O. Beffort and P. A. Buffat, Phil. Mag. 79 (1999) 2833.

    Google Scholar 

  34. C. Cayron and P. A. Buffat, Acta Mater. 48 (2000) 2639.

    Google Scholar 

  35. V. Massardier, T. Epicier and P. Merle, ibid. 48 (2000) 2911.

    Google Scholar 

  36. I.C. Barlow, W. M. Rainforth and H. Jones, J. Mater. Sci. 35 (2000) 1413.

    Google Scholar 

  37. R. D. Schueller, F. E. Wawner and A. K. Sachdev, ibid. 29 (1994) 424.

    Google Scholar 

  38. L. M. Wang, H. M. Flower and T. C. Lindley, Scr. Mater. 41 (1999) 391.

    Google Scholar 

  39. D. J. Chakrabarti, B. Cheong and D. E. Laughlin, in “Automotive Alloys II,” edited by S. K. Das (TMS, Warrendale, 1998) p. 27.

    Google Scholar 

  40. N. KH. Abrikosov (Ed.), “Phase Diagrams of Aluminumand Magnesium-Based Systems” (Nauka, Moscow, 1977).

  41. A. Perovic, D. D. Perovic, G. C. Weatherly and D. J. Lloyd, Scr. Mater. 41 (1999) 703.

    Google Scholar 

  42. G. W. Smith, W. J. Baxter and R. K. Mishra, J. Mater. Sci. 35 (2000) 3871.

    Google Scholar 

  43. B. Dubost, J. Bouvaist and M. Reboul, in Proceedings of the 1st International Conference on Aluminum Alloys (ICAA'1), Charlottesville, June 1986, Vol. 2 (Engineering Materials Advisory Services Ltd, Warley, 1986) p. 1109.

    Google Scholar 

  44. X. Gao, J. F. Nie and B. C. Muddle, Mater. Sci. Forum 217–222 (1996) 1251.

    Google Scholar 

  45. T. Sakurai and T. Eto, Kobe Steel and Development 43(2) (1993) 95.

    Google Scholar 

  46. W. F. Miao and D. E. Laughlin, J. Mater. Sci. Lett. 19 (2000) 201.

    Google Scholar 

  47. S. G. Bergsma, M. E. Kassner, X. Li and M. A. Wall, Mater. Sci. Eng. A 254 (1998) 112.

    Google Scholar 

  48. G. C. Weatherly, A. Perovic, N. K. Mukhopadhyay, D. J. Lloyd and D. D. Perovic, Metall. Mater. Trans. A 32A (2001) 213.

    Google Scholar 

  49. R. K. Mishra, G. W. Smith, W. J. Baxter, A. K. Sachdev and V. Franetovic, J. Mater. Sci. 36 (2001) 461.

    Google Scholar 

  50. A. K. Gupta, M. C. Chaturvedi and A. K. Jena, Mater. Sci. Technol. 5 (1989) 52.

    Google Scholar 

  51. S. Abis, P. Mengucci and G. Riontino, Phil.Mag. 70(5) (1994) 851.

    Google Scholar 

  52. I. Dutta, C. P. Harper and G. Dutta, Metall. Mater. Trans. A 25A (1994) 1591.

    Google Scholar 

  53. G. Riontino and A. Zanada, Mater. Lett. 37 (1998) 241.

    Google Scholar 

  54. W. F. Miao and D. E. Laughlin, Metall. Mater. Trans. A 31A (2000) 361.

    Google Scholar 

  55. J.-Y. Yao, G. A. Edwards and D. A. Graham, Mater. Sci. Forum 217–222 (1996) 777.

    Google Scholar 

  56. R. P. Wahi and M. V. Heimendahl, Aluminium 48 (1973) 673.

    Google Scholar 

  57. P. Ouellet and F. H. Samuel, J. Mater. Sci. 34 (1999) 4671.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskin, D.G. Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. Journal of Materials Science 38, 279–290 (2003). https://doi.org/10.1023/A:1021109514892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021109514892

Keywords

Navigation