Skip to main content
Log in

Alteration of Protease Levels in Different Brain Areas of Suicide Victims

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Numerous recent studies found that proteases play a major role in brain function. In addition to their role in protein turnover, they have modulatory functions and an important role in apoptosis, pathological changes, and other mechanisms. To explore possible differences in brain protein metabolism of suicide victims, we examined the activity of two proteases, cathepsin D and calpain (I and II combined), in eleven discrete areas of postmortem brain tissue of 21 victims of suicide and of 31 age- and sex-matched control subjects without a history of psychiatric or neurological disease. The levels of functionally important amino acids in five of these areas were also measured. Cathepsin D activity was found to be lower in two of eleven regions of brains of suicide victims, the parahippocampal cortex and the medial hypothalamus, by 26% and 27%, respectively. Calpain activity was lower in two different areas tested, 29% in the medulla oblongata and 26% in the lateral prefrontal cortex, and was 18% higher in the midbrain. There were no significant differences in the other areas (globus pallidus, hippocampus, amygdala, caudate nucleus, ventral tegmental area, and nucleus accumbens). Protease distribution was regionally heterogeneous—the levels in the globus pallidus were low, and in the hippocampus high, with about a two-fold difference. The length of the postmortem period for obtaining tissue, the storage time of the frozen tissue, and the age of the subject had no apparent influence on the results obtained. Although there was a tendency toward higher levels of aspartate and glycine in brain areas from suicide victims, the difference was not significant. The variations among individual brains were greater in amino acid levels than in protease levels. The findings indicate the possible role of protein metabolism in depressive or suicidal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Arato, M., Tekes, K., Tothfalusi, L., Frecska, E., Falus, A., Palkovits, M., and MacCrimmon, D. J. 1991. Serotonin dysregulation in suicide—Serotonin-related psychiatric syndromes: clinical and therapeutic links. Pages 41–46, in Cassano G. B., and Akiskai H. S. (eds.), Royal Society of Medicine Services Limited.

  2. Arango, V., Underwood, M. D., Gubbi, A. V., and Mann, J. J. 1995. Localized alteration in pre-and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res. 688:121–133.

    Google Scholar 

  3. Marazziti, D., Presta, S., Silvestri, S., Battistini, A., Mosti, L., Balestri, C., Palego, L., and Conti, L. 1995. Platelet markers in suicide attempters. Prog. Neuro-Psych. Biol. Psych. 19:375–383.

    Google Scholar 

  4. Biegon, A. and Fieldust, S. 1992. Reduced tyrosine hydroxylase immunoreactivity in locus coeruleus of suicide victims. Synapse 10:79–82.

    Google Scholar 

  5. Palkovits, M. 1973. Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59:449–450.

    Google Scholar 

  6. Kenessey, A., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A. 1989. Increase in cathepsin D activity in rat brain in aging. J. Neurosci. Res. 23:454–456.

    Google Scholar 

  7. Nakai, N., Lai, C. Y., and Horecker, B. L. 1974. Use of fluorescamine in the chromatographic analysis of peptides from proteins. Anal. Biochem. 58:563–570.

    Google Scholar 

  8. Karlsson, J.-O., Gustavsson, S., Hall, C., and Nilsson, E. 1985. A simple one-step procedure for the separation of calpain I, calpain II and calpastatin. Biochem. J. 231:201–204.

    Google Scholar 

  9. Ashby, C. D., and Walsh, D. A. 1974. Purification and characterization of an inhibitor protein of cyclic AMP-dependent protein kinases. Meth. Enzymol. 38:350–358.

    Google Scholar 

  10. Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–356.

    Google Scholar 

  11. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements. I. Glutamate and related amino acids. Neurochem. Res. 14:555–562.

    Google Scholar 

  12. Neidle, A., Banay-Schwartz, M., Sacks, S., and Dunlop, D. S. 1989. Amino acid analysis using 1–naphthylisocyanate as a precolumn HPLC derivatization reagent. Anal. Biochem. 180:291–297.

    Google Scholar 

  13. Banay-Schwartz, M., Kenessey, A., DeGuzman, T., Lajtha, A., and Palkovits, M. 1992. Protein content of various regions of rat brain and adult and aging human brain. Age 15:51–54.

    Google Scholar 

  14. Owens, M. J., and Nemeroff, C. B. 1994. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin. Chem. 40:288–295.

    Google Scholar 

  15. Freed, W. J., Dillon-Carter, O., and Kleinman, J. E. 1993. Properties of [3H]AMPA binding in postmortem human brain from psychotic subjects and controls: increases in caudate nucleus associated with suicide. Exp. Neurol. 121:48–56.

    Google Scholar 

  16. Holemans, S., De Paermentier, F., Horton, R. W., Crompton, M. R., Katona, C. L., and Maloteaux, J. M. 1993. NMDA glutamatergic receptors, labelled with [3H]MK-801, in brain samples from drug-free depressed suicides. Brain Res. 616:138–143.

    Google Scholar 

  17. Roy, A., Karoum, F., and Pollack, S. 1992. Marked reduction in indexes of dopamine metabolism among patients with depression who attempt suicide. Arch. Gen. Psychiat. 49:447–450.

    Google Scholar 

  18. Dunlop, D. S., van Elden, W., and Lajtha, A. 1978. Protein degradation rates in regions of the central nervous system in vivo during development. Biochem. J. 170:637–642.

    Google Scholar 

  19. Dunlop, D. S., van Elden, W., and Lajtha, A. 1977. Developmental effects on protein synthesis rates in regions of the CNS in vivo and in vitro. J. Neurochem. 29:939–945.

    Google Scholar 

  20. Sun, Y., Deibler, G. E., Jehle, J., Macedonia, J., Dumont, I., Dang, T., and Smith, C. B. 1995. Rates of local cerebral protein synthesis in the rat during normal postnatal development. Amer. J. Physiol. 268:549–561.

    Google Scholar 

  21. Banay-Schwartz, M., Bracco, F., DeGuzman, T., and Lajtha, A. 1983. Developmental changes in the breakdown of brain tubulin by cerebral cathepsin D. Neurochem. Res. 8:51–61.

    Google Scholar 

  22. Wiederanders, B., and Oelke, B. 1984. Accumulation of inactive cathepsin D in old rats. Mech. Age. Dev. 24:265–271.

    Google Scholar 

  23. Kenessey, A., Banay-Schwartz, M., DeGuzman, T., and Lajtha, A. 1990. Calpain II activity and calpastatin content in brain regions of 3–and 24–month-old rats. Neurochem. Res. 15:243–249.

    Google Scholar 

  24. Banay-Schwartz, M., DeGuzman, T., Kennessey, A., Palkovits, M., and Lajtha, A. 1992. The distribution of cathepsin D activity in adult and aging human brain regions. J. Neurochem. 58:2207–2211.

    Google Scholar 

  25. Banay-Schwartz, M., DeGuzman, T., Palkovits, M., and Lajtha, A. 1994. Calpain activity in adult and aged human brain regions. Neurochem. Res. 19:563–567.

    Google Scholar 

  26. Cataldo, A. M., Hamilton, D. J., Barnett, J. L., Paskevich, P. A., and Nixon, R. A. 1996. Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. J. Neurosci. 16:186–199.

    Google Scholar 

  27. Cataldo, A. M., Barnett, J. L., Berman, S. A., Li, J., Quarless, S., Bursztajn, S., Lippa, C., and Nixon, R. A. 1995. Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system. Neuron 14:671–680.

    Google Scholar 

  28. Saito, K., Elce, J. S., Hamos, J. E., and Nixon, R. A. 1993. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc. Natl. Acad. Sci. U.S.A. 90:2628–2632.

    Google Scholar 

  29. Chen, Z. L., Yoshida, S., Kato, K., Momota, Y., Suzuki, J., Tanaka, T., Ito, J., Nishino, H., Aimoto, S., and Kiyama, H., and Shiosaka, S. 1995. Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J. Neurosci. 15:5088–5097.

    Google Scholar 

  30. Azaryan, A., Dovanjyan, G., and Lajtha, A. 1991. Stress-induced changes in cerebral ATP+ubiquitin-dependent proteinase activity vary with age. Acta Biol. Hung. 42:297–300.

    Google Scholar 

  31. Benuck, M., Banay-Schwartz, M., Ramacci, M. T., and Lajtha, A. 1992. Peroxidative stress effects on calpain activity in brain of young and adult rats. Brain Res. 596:296–298.

    Google Scholar 

  32. Benuck, M., Banay-Schwartz, M., and Lajtha, A. 1993. Proteolytic activity is altered in brain tissue of rats upon chronic exposure to ozone. Life Sci. 52:877–881.

    Google Scholar 

  33. Benuck, M., Banay-Schwartz, M., DeGuzman, T., Vizi, E. S., Kekes-Szabo, A., and Lajtha, A. 1995. Effect of diet on tissue protease activity. J. Neurosci. Res. 40:675–679.

    Google Scholar 

  34. Bonner, A. B., Swann, M. E., Marway, J. A., Heap, L. C., and Preedy, V. R. 1995. Lysosomal and nonlysosomal protease activities of the brain in response to ethanol feeding. Alcohol 12:505–509.

    Google Scholar 

  35. Qian, Z., Gilbert, M. E., Colicos, M. A., Kandel, E. R., and Kuhl, D. 1993. Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361:453–457.

    Google Scholar 

  36. Ostwald, K., Hagberg, H., Andine, P., and Karlsson, J. O. 1993. Upregulation of calpain activity in neonatal rat brain after hypoxicischemia. Brain Res. 630:289–294.

    Google Scholar 

  37. Mansuy, I. M., van der Putten, H., Schmid, P., Meins, M., Botteri, F. M., and Monard, D. 1993. Variable and multiple expression of Protease Nexin-1 during mouse organogenesis and nervous system development. Development 119:1119–1134.

    Google Scholar 

  38. Leterrier, J. F., and Eyer, J. 1992. Age-dependent changes in the ultrastructure and in the molecular composition of rat brain microtubules. J. Neurochem. 59:1126–1137.

    Google Scholar 

  39. Posmantur, R., Hayes, R. L., Dixon, C. E., and Taft, W. C. 1994. Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J. Neurotrauma 11:533–545.

    Google Scholar 

  40. Lajtha, A. 1994. Controls of cerebral protein breakdown. Adv. Exp. Med. Biol. 341:107–117.

    Google Scholar 

  41. Bi, X., Tocco, G., and Baudry, M. 1994. Calpain-mediated regulation of AMPA receptors in adult rat brain. Neuroreport 6:61–64.

    Google Scholar 

  42. Greenwood, A. F., and Jope, R. S. 1994. Brain G-protein proteolysis by calpain: enhancement by lithium. Brain Res. 636:320–326.

    Google Scholar 

  43. Najm, I., el-Skaf, G., Tocco, G., Vanderklish, P., Lynch, G., and Baudry, M. 1992. Seizure activity-induced changes in polyamine metabolism and neuronal pathology during the postnatal period in rat brain. Brain Res. 69:11–21.

    Google Scholar 

  44. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1989. Changes with aging in the levels of amino acids in rat CNS structural elements. II. Taurine and small neutral amino acids. Neurochem. Res. 14:563–570.

    Google Scholar 

  45. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1990. Changes with aging in the levels of amino acids in rat CNS structural elements. III. Large neutral amino acids. J. Neurosci. Res. 26:209–216.

    Google Scholar 

  46. Banay-Schwartz, M., Lajtha, A., and Palkovits, M. 1992. Regional distribution of glutamate and aspartate in adult and old human brain. Brain. Res. 594:343–346.

    Google Scholar 

  47. Banay-Schwartz, M., Palkovits, M., and Lajtha, A. 1993. Levels of amino acids in 52 discrete areas of postmortem brain of adult and aged humans. Amino Acids 5:273–287.

    Google Scholar 

  48. Banay-Schwartz, M., Palkovits, M., and Lajtha, A. 1993. Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem. Res. 18:417–423.

    Google Scholar 

  49. Banay-Schwartz, M., DeGuzman, T., Lajtha, A., and Palkovits, M. 1996. Amino acid distribution in immature rat brain. Neurobiology 4:393–403.

    Google Scholar 

  50. Currie, P. J., Chang, N., Luo, S., and Anderson, G. H. 1995. Microdialysis as a tool to measure dietary and regional effects on the complete profile of extracellular amino acids in the hypothalamus of rats. Life Sci. 57:1911–1923.

    Google Scholar 

  51. Lutz, P. L., Ortiz, M., Leone-Kabler, S., and Schulman, A. 1994. Regional changes in amino acid levels of the neonate rat brain during anoxia and recovery. Neurochem. Res. 19:1283–1287.

    Google Scholar 

  52. Chanez, C., Rabin, O., Heroux, M., and Giguere, J. F. 1993. Cerebral amino acid changes in an animal model of intrauterine growth retardation. Metab. Brain Dis. 8:61–72.

    Google Scholar 

  53. Loscher, W., Wahnschaffe, U., Rundfeldt, C., Honack, D., and Hoppen, H. O. 1992. Regional alterations in brain amino acids during the estrous cycle of the rat. Neurochem. Res. 17:973–977.

    Google Scholar 

  54. Molina-Holgado, E., Dewar, K. M., Grondin, L., van Gelder, N. M., and Reader, T. A. 1993. Amino acid levels and gamma-aminobutyric acid A receptors in rat neostriatum, cortex, and thalamus after neonatal 6–hydroxydopamine lesion. J. Neurochem. 60:936–945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banay-Schwartz, M., DeGuzman, T., Faludi, G. et al. Alteration of Protease Levels in Different Brain Areas of Suicide Victims. Neurochem Res 23, 953–959 (1998). https://doi.org/10.1023/A:1021028304481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021028304481

Navigation