Skip to main content
Log in

Presynaptic Dopaminergic Function in the Nucleus Accumbens Following Chronic Opiate Treatment and Precipitated Withdrawal

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Naloxone treatment at three days following implantation of pellets containing morphine base increased uptake of tritiated dopamine by the nucleus accumbens but did not alter efflux of tritiated dopamine by the nucleus accumbens or tritiated norepinephrine by the hippocampus. At six days following placement of pellets containing morphine base, withdrawal score was increased after treatment with either saline or naloxone, indicating that animals were undergoing spontaneous opiate withdrawal. Fractional efflux of tritiated dopamine was decreased at this time point following intermittent stimulation with 317 and 1000 μM 4-aminopyridine, for striatal slices obtained from animals pretreated with either saline or naloxone. For the nucleus accumbens at six days after placement of morphine pellets, similar decreases in the efflux of tritiated dopamine were only observed in slices obtained from naloxone treated animals. Fractional dopamine efflux was also diminished after in vitro exposure to rising concentrations of 4-aminopyridine, amphetamine, or cocaine for tissue obtained from the nucleus accumbens, but not for slices from the striatum at six days following morphine pellet implantation. In conclusion, deficits in dopamine efflux by the nucleus accumbens occur at a time when animals are undergoing spontaneous opiate withdrawal at six days following morphine pellet implantation, but do not occur at an earlier time point when withdrawal is precipitated by naloxone treatment. These deficits are apparent for brain slices obtained from the striatum or nucleus accumbens after exposure to rising concentrations of different in vitro treatments, with tissue obtained from the nucleus accumbens being more sensitive than the striatum to dopamine efflux produced by a wider range of treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fallon J. H. 1988. Topographic organization of ascending dopaminergic projections. Pages 1–9, in Kalivas P. W. and Nemeroff C. B. (eds.), The Mesocorticolimibic Dopamine System, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  2. Rossetti Z. L., Hmaidan Y., and Gessa G. 1992. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Europ. J. Pharm. 221:227–234.

    Google Scholar 

  3. Klitenick M. A., DeWitte P., and Kalivas P. W. 1992. Regulation of somatodendritic dopamine release in the ventral tegmental area by opioids and GABA: an in vivo microdialysis study. J. Neurochem. 12:2623–2632.

    Google Scholar 

  4. Westerink B. H. C., Kwint H. F., and deVries J. B. 1996. The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J. Neuroscience 16:2605–2611.

    Google Scholar 

  5. Johnson S. W., and North R. A. 1992. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurochem. 12:483–488.

    Google Scholar 

  6. Cohen G. A., Doze V. A., and Madison D. V. 1992. Opioid inhibition of GABA release from presynaptic terminals of rat hippocampal interneurons. Neuron 9:325–335.

    Google Scholar 

  7. Sugita S. and North R. A. 1993. Opioid actions on neurons of rat lateral amygdala in vitro. Brain Res. 612:151–155.

    Google Scholar 

  8. Kopin I. J. 1994. Neurotransmitters and disorders of the basal ganglia. Pages 899–918, in Siegel G. J., Agranoff B. W., Albers R. W. and Molinoff P. B. (eds.), Basic Neurochemistry, Raven Press, New York.

    Google Scholar 

  9. Pozzi L., Trabace L., Invernizzi R., and Samanin R. 1995. Intranigral GR-113808, a selective 5-HT receptor antagonist, attenuates morphine-stimulated dopamine release in the rat striatum. Brain Res. 692:265–268.

    Google Scholar 

  10. Attila L. M. J. and Ahtee L. 1984. Retardation of cerebral dopamine turnover after morphine withdrawal and its enhanced acceleration by acute morphine administration in rats. Naunyn-Schmied Arch. Pharm. 327:201–207.

    Google Scholar 

  11. Domesick V. B. 1988. Neuroanatomical organization of dopamine neurons in the ventral tegmental area. Pages 10–26, in Kalivas P. W. and Nemeroff C. B. (eds.), The Mesocorticolimibic Dopamine System, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  12. Gorbachvskaya A. I. 1996. Projections of the ventral tegmentum area, formations of the substantia nigra and nuclei of the amygdaloid body on different segments of the caudate nucleus and the accumbens nucleus in dogs. Neurosci. Behav. Physiol. 26:213–219.

    Google Scholar 

  13. Tien Ril H. K. G. T., De Vries T. J., Wardeh G., Hogenboom F., Mulder A. H., and Schoffelmeer A. N. M. 1993. Long-lasting reciprocal changes in striatal dopamine and acetylcholine release upon morphine withdrawal. Europ. J. Pharm. 235:321–322.

    Google Scholar 

  14. Ghosh S., Patel A. H., Cousins M., and Grasing K. 1998. Different effects of opiate withdrawal on dopamine turnover, uptake, and release in the striatum and nucleus accumbens. Neurochem. Res. 23:877–887.

    Google Scholar 

  15. Bosse A. and Kuschinsky K. 1976. Alterations of dopaminergic neurotransmission after chronic morphine treatment: pre-and postjunctional studies in striatal tissue. Naunyn-Schmied. Arch. Pharm. 294:17–22.

    Google Scholar 

  16. Stamford J. A. 1995. Voltammetry in brain slices. Pages 65–88, in Schurr A. and Rigor B. M. (eds.), Brain Slices in Basic and Clinical Research, CRC Press, Boca Raton.

    Google Scholar 

  17. Volkow N. D., Wang G. J., Fowler J. S., Logan J., Gatley S. J., Hitzemann R., Chen A. D., Dewey S. L. and Pappas N. 1997. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833.

    Google Scholar 

  18. Johnson D. W. and Glick S. D. 1994. Handling and/or saline injections alter basal and morphine-evoked changes in dopamine metabolites in the striatum and nucleus accumbens of rats. Pharmacol. Biochem. Behav. 47:765–768.

    Google Scholar 

  19. Fraioli F., Moretti C., Paolucci D., Alicicco E., Crescenzi F. and Fortunio G. 1992. Physical exercise stimulates marked concomitant release of beta-endorphin and adrenocorticotropic hormone (ACTH) in peripheral blood in man. Experientia 36:987–989.

    Google Scholar 

  20. Abercrombie E. D., Keefe K. A., DiFrischia D. S. and Zigmond M. J. 1989. Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52:1655–1658.

    Google Scholar 

  21. Kalivas P. W., Widerlov E., Stanley D., Breese G., and Prange A. J., Jr. 1983. Enkephalin action on the mesolimbic system: a dopamine-dependent and dopamine-independent increase in locomotor activity. J. Pharmacol. Exper. Ther. 227:229–237.

    Google Scholar 

  22. Iwamoto E. T. and Way E. L. 1977. Circling behavior and stereotypy induced by intranigral opiate microinjections. J. Pharmacol. Exper. Ther. 203:347–359.

    Google Scholar 

  23. Harris G. C. and Aston-Jones G. 1994. Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371:155–157.

    Google Scholar 

  24. Grasing K., Bills D., Ghosh S., Schlussman S., Patel A. H. and Woodward J. J. 1997. Opiate modulation of striatal dopamine and hippocampal norepinephrine release following morphine withdrawal. Neurochem. Res. 22:239–248.

    Google Scholar 

  25. Rasmussen K., Beitner-Johnson D. B., Krystal J. H., Aghajanian G. K. and Nestler E. J. 1990. Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical mechanisms. J. Neurochem. 10:2308–2317.

    Google Scholar 

  26. Taylor J. R., Elsworth J. D., Garcia E. J., Grant S. J., Roth R. H. and Redmond D. E. 1988. Clonidine infusions into the locus coeruleus attenuate behavioral and neurochemical changes associated with naloxone-precipitated withdrawal. Psychopharmacology 96:121–131.

    Google Scholar 

  27. Rogawski M. A. and Barker J. L. 1983. Effects of 4-aminopyridine on calcium action potentials and calcium current under voltage clamp in spinal neurons. Brain Res. 280:180–185.

    Google Scholar 

  28. Gold L. H., Stinus L., Inturrisi C. E., and Koob G. F. 1994. Prolonged tolerance, dependence and abstinence following subcutaneous morphine pellet implantation in the rat. Europ. J. Pharm. 253:45–51.

    Google Scholar 

  29. Church W. H., Justice J. B. and Byrd L. D. 1987. Extracellular dopamine in rat striatum following uptake inhibition by cocaine, nomifensine, and benztropine. Europ. J. Pharm. 139:345–348.

    Google Scholar 

  30. Parker E. M. and Cubeddu L. X. 1988. Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J. Pharmacol. Exper. Ther. 245:199–210.

    Google Scholar 

  31. Yoburn B. C., Chen J., Huang T. and Inturrisi C. E. 1985. Pharmacokinetics and pharmacodynamics of subcutaneous morphine pellets in the rat. J. Pharmacol. Exper. Ther. 235:282–286.

    Google Scholar 

  32. Cerletti C., Keinath S. H., Reidenberg M. M. and Adler M. W. 1976. Chronic morphine administration: plasma levels and withdrawal syndrome in rats. Pharmacol. Biochem. Behav. 4:323–327.

    Google Scholar 

  33. Rasmussen K. and Aghajanian G. K. 1989. Withdrawal-induced activation of locus coeruleus neurons in opiate dependent rats: attenuation by lesions of the nucleus paragigantocellularis. Brain Res. 505:346–350.

    Google Scholar 

  34. Laverty R. and Roth R. H. 1980. Clonidine reverses the increased norepinephrine turnover during morphine withdrawal in rats. Brain Res. 182:482–485.

    Google Scholar 

  35. Crawley J. N., Laverty R., and Roth R. H. 1979. Clonidine reversal of increased norepinephrine metabolite levels during morphine withdrawal. Europ. J. Pharm. 57:247–250.

    Google Scholar 

  36. Maldonado R. and Koob G. F. 1993. Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res. 605:128–138.

    Google Scholar 

  37. Langer S. Z. and Cavero I. 1980. Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents. Hyperten. 2:372–382.

    Google Scholar 

  38. Silverstone P. H., Done C. and Sharp T. 1993. In vivo monoamine release during naloxone precipitated withdrawal. Neuroreport 4:1043–1045.

    Google Scholar 

  39. Done C., Silverstone P. and Sharp T. 1992. Effect of naloxone precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo. Europ. J. Pharm. 215:333–336.

    Google Scholar 

  40. Silverstone P. H., Done C. and Sharp T. 1992. Clonidine but not nifedipine prevents the release of noradrenaline during naloxone precipitated opiate withdrawal; an in vivo microdialysis study in the rat. Psychopharmacology 109:235–238.

    Google Scholar 

  41. Moises H. C., Smith C. B., Spengler R. N. and Hollingsworth P. J. 1986. Presynaptic alpha 2 adrenoreceptor function in dependent rats before and after morphine withdrawal. NIDA Research Monograph 75:579–582.

    Google Scholar 

  42. Werling L. L., Brown S. R., and Cox B. M. 1987. Opioid receptor regulation of the release of norpepinephrine in the brain. Neuropharmacology 26:987–996.

    Google Scholar 

  43. Ashtee L., Attila L. M. J., Carlson K. R. and Haikala H. 1989. Changes in brain monoaminergic metabolism during withdrawal from chronic oral self-administration of morphine and in response to a morphine challenge in the withdrawn state. J. Pharmacol. Exper. Ther. 249:303–310.

    Google Scholar 

  44. Blasig J., Gramsch C., Laschka E. and Herz A. 1976. The role of dopamine in withdrawal jumping in morphine dependent rats. Arzneim. Forsch. 26:1104–1106.

    Google Scholar 

  45. Gramsch C., Blasig J. and Herz A. 1997. Changes in striatal dopamine metabolism during precipitated morphine withdrawal. Europ. J. Pharm. 44:231–240.

    Google Scholar 

  46. Brent P. J. and Chahl L. A. 1991. Effects of naloxone-precipitated withdrawal after a single dose of morphine on catecholamine concentrations in guinea-pig brain. Neurochem. Res. 16:525–531.

    Google Scholar 

  47. Tokuyama S. and Ho I. K. 1996. Effects of diltiazem, a calcium channel blocker, on naloxone-precipitated changes in dopamine and its metabolites in the brains of opioid-dependent rats. Psychopharmacology 125:135–140.

    Google Scholar 

  48. Acquas E. and Di Chiara G. 1992. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 58:1620–1625.

    Google Scholar 

  49. Rossetti Z. L., Melis F., Carboni S. and Gessa G. L. 1992. Dramatic depletion of mesolimbic extracellular dopamine after withdrawal from morphine, alcohol or cocaine: a common neurochemical substrate for drug dependence. Ann. N. Y. Acad. Sci. 654:513–516.

    Google Scholar 

  50. Crippens D. and Robinson T. E. 1994. Withdrawal from morphine or amphetamine: different effects on dopamine in the ventral-medial striatum studied with microdialysis. Brain Res. 650:56–62.

    Google Scholar 

  51. Airio J., Attila M., Liekola-Pelho T. and Ahtee L. 1994. Withdrawal from repeated morphine sensitizes mice to the striatal dopamine release enhancing effect of acute morphine. Naunyn-Schmied. Arch. Pharm. 350:548–554.

    Google Scholar 

  52. Etemadzadeh E. 1994. Cerebral dopamine and noradrenaline in mice withdrawn from repeated mophine treatment and development of tolerance to a test dose of morphine. Gen. Pharmac. 25:623–629.

    Google Scholar 

  53. Attila L. M. and Ahtee L. 1983. Cerebral dopamine and noradrenaline turnover and effects of morphine test dose in rats withdrawn from 20 days' morphine treatment. Med. Biol. 61:249–257.

    Google Scholar 

  54. Etemadzadeh E. 1993. Cerebral catecholamine depletion in mice withdrawn from repeated morphine treatment and development of tolerance to the enhancing effect of morphine on noradrenergic depletion. J. Pharmacol. Exper. Ther. 266:749–755.

    Google Scholar 

  55. Ahtee L. and Attila L. M. J. 1987. Cerebral monoamine neurotransmitters in opioid withdrawal and dependence. Med. Biol. 65:113–119.

    Google Scholar 

  56. Tjon G. H. K., De Vries T. J., Ronken E., Hogenboom F., Wardeh G., Mulder A. H., and Schoffelmeer A. N. M. 1994. Repeated and chronic morphine administration causes differential long-lasting changes in dopaminergic neurotransmission in rat striatum without changing its delta and kappa opioid receptor regulation. Europ. J. Pharm. 252:205–212.

    Google Scholar 

  57. Pifl C., Drobny H., Reither H., Hornykiewicz O. and Singer E. A. 1995. Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol. Pharm. 47:368–373.

    Google Scholar 

  58. Robertson M. W., Leslie C. A. and Bennett J. P. J. 1991. Apparent synaptic dopamine deficiency induced by withdrawal from chronic cocaine treatment. Brain Res. 538:337–339.

    Google Scholar 

  59. Weiss F., Markou A., Lorang M. T. and Koob G. F. 1992. Basal extracellular dopamine levels in the mucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Res. 593:314–318.

    Google Scholar 

  60. Volkow N. D., Fowler J. S., Wang G. J., Hitzemann R., Logan J., Schlyer D. J., Dewey S. L. and Wolf A. P. 1993. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177.

    Google Scholar 

  61. Kuhar M. J. and Pilotte N. S. 1996. Neurochemical changes in cocaine withdrawal. Trends Pharm. Science 17:260–264.

    Google Scholar 

  62. Kampman K., Volpicelli J. R., Alterman A., Cornish J., Weinrieb R., Epperson L., Sparkman T. and O'Brien C. P. 1996. Amantadine in the early treatment of cocaine dependence: a double blind, placebo-controlled trial. Drug Alcohol Depend. 41:25–33.

    Google Scholar 

  63. Little K. Y., Patel U. N., Clark T. B., and Butts J. D. 1996. Alteration of brain dopamine and serotonin levels in cocaine users: a preliminary report. Am. J. Psychiatry 153:1216–1218.

    Google Scholar 

  64. Diana M., Pistis M., Muntoni A., and Gessa G. 1995. Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. J. Pharmacol. Exper. Ther. 272:781–785.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Grasing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Grasing, K. Presynaptic Dopaminergic Function in the Nucleus Accumbens Following Chronic Opiate Treatment and Precipitated Withdrawal. Neurochem Res 24, 95–107 (1999). https://doi.org/10.1023/A:1020988215732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020988215732

Navigation