Skip to main content
Log in

Repeated Cocaine Self-Administration Causes Multiple Changes in Rat Frontal Cortex Gene Expression

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Repeated cocaine administration produces changes in gene expression that are thought to contribute to the behavioral alterations observed with cocaine abuse. This study focuses on gene expression changes in the frontal cortex, a component of reinforcement, sensory, associative, and executive circuitries. Changes in frontal cortex gene expression after repeated cocaine self-administration may lead to changes in the behaviors associated with this brain region. Rats self-administered cocaine for 10 days in a continuous access, discrete trial paradigm (averaging 100 mg/kg/day) and were examined for changes in relative frontal cortex mRNA abundance by cDNA hybridization arrays. Among the changes observed following array analysis, increased nerve-growth-factor–induced B (NGFI-B), adenylyl cyclase type VIII (AC VIII), and reduced cysteine-rich protein 2 (CRP2) mRNA were confirmed by quantitative RT-PCR. These changes share commonalities and exhibit differences with previous reports of gene expression changes in the frontal cortex after noncontingent cocaine administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Freeman, W. M., Vacca, S. E., Dougherty, K., and Vrana, K. E. 2002. An interactive database of cocaine-repsonive neuronal gene expression. The ScientifcWorld 2:701-706.

    Google Scholar 

  2. Kuhar, M. J., Joyce, A., and Dominguez, G. 2001. Genes in drug abuse. Drug Alcohol Depend. 62:157-162.

    Google Scholar 

  3. Nestler, E. J. 2001. Molecular basis of long-term plasticity underlying addiction. Nature Neurosci. Rev. 2:119-128.

    Google Scholar 

  4. Ghasemzadeh, M. B., Nelson, L. C., Lu, X. Y., and Kalivas, P. W. 1999. Neuroadaptations in ionotropic and metabotropic glutamate receptor mRNA produced by cocaine treatment. J. Neurochem. 72:157-165.

    Google Scholar 

  5. Self, D. W., Genova, L. M., Hope, B. T., Barnhart, W. J., Spencer, J. J., and Nestler, E. J. 1998. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J. Neurosci. 18:1848-1859.

    Google Scholar 

  6. Nestler, E. J., Kelz, M. B., and Chen, J. 1999. DeltaFosB: a molecular mediator of long-term neural and behavioral plasticity. Brain Res. 835:10-17.

    Google Scholar 

  7. Fosnaugh, J. S., Bhat, R. V., Yamagata, K., Worley, P. F., and Baraban, J. M. 1995. Activation of arc, a putative "effector" immediate early gene, by cocaine in rat brain. J. Neurochem. 64:2377-2380.

    Google Scholar 

  8. Nestler, E. J. 2001. Psychogenomics: opportunities for understanding addiction. J. Neurosci. 21:8324-8327.

    Google Scholar 

  9. Carlezon, W. A., Thome, J., Olson, V. G., Lane-Ladd, S. B., Brodkin, E. S., Hiroi, N., Duman, R. S., Neve, R. L., and Nestler, E. J. 1998. Regulation of cocaine reward by CREB. Science 282:2272-2275.

    Google Scholar 

  10. Grant, S., London, E. D., Newlin, D. B., Villemagne, V. L., Liu, X., Contoreggi, C., Phillips, R. L., Kimes, A. S., and Margolin, A. 1996. Activation of memory circuits during cue-elicited cocaine craving. Proc. Natl. Acad. Sci. USA 93:12040-12045.

    Google Scholar 

  11. Berke, J. D. and Hyman, S. E. 2000. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515-532.

    Google Scholar 

  12. Klebaur, J. E., Ostrander, M. M., Norton, C. S., Watson, S. J., Akil, H., and Robinson, T. E. 2002. The ability of amphetamine to evoke arc (Arg 3.1) mRNA expression in the caudate, nucleus accumbens and neocortex is modulated by environmental context. Brain Res. 930:30-36.

    Google Scholar 

  13. Schmidt, E. F., Sutton, M. A., Schad, C. A., Karanian, D. A., Brodkin, E. S., and Self, D. W. 2001. Extinction training regulates tyrosine hydroxylase during withdrawal from cocaine self-administration. J. Neurosci. 21:RC137.

    Google Scholar 

  14. Hyman, S. E. 2001. A 28-year-old man addicted to cocaine. JAMA 286:2586-2594.

    Google Scholar 

  15. Harlan, R. E. and Garcia, M. M. 1998. Drugs of abuse and immediate-early genes in the forebrain. Mol. Neurobiol. 16:221-267.

    Google Scholar 

  16. Berke, J. D., Paletzki, R. F., Aronson, G. J., Hyman, S. E., and Gerfen, C. R. 1998. A complex program of striatal gene expression induced by dopaminergic stimulation. J. Neurosci. 18:5301-5310.

    Google Scholar 

  17. Wang, J. Q., Smith, A. J., and McGinty, J. F. 1995. A single injection of amphetamine or methamphetamine induces dynamic alterations in c-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain. Neuroscience 68:83-95.

    Google Scholar 

  18. Werme, M., Olson, L., and Brene, S. 2000. NGFI-B and Nor1 mRNAs are upregulated in brain reward pathways by drugs of abuse: different effects in Fischer and Lewis rats. Mol. Brain Res. 76:18-24.

    Google Scholar 

  19. Hope, B. T., Nye, H. E., Kelz, M. B., Self, D. W., Iadarola, M. J., Nakabeppu, Y., Duman, R. S., and Nestler, E. J. 1994. Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235-1244.

    Google Scholar 

  20. Kelz, M. B., Chen, J., Carlezon, W. A., Whisler, K., Gilden, L., Beckmann, A. M., Steffen, C., Zhang, Y. J., Marotti, L., Self, D. W., Tkatch, T., Baranauskas, G., Surmeier, D. J., Neve, R. L., Duman, R. S., Picciotto, M. R., and Nestler, E. J. 1999. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401:272-276.

    Google Scholar 

  21. Paulson, P. E., Camp, D. M., and Robinson, T. E. 1991. Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology (Berl.) 103:480-492.

    Google Scholar 

  22. Kuhar, M. J. and Joyce, A. R. 2001. Slow onset of CNS drugs: can changes in protein concentration account for the delay? Trends Pharmacol. Sci. 22:450-456.

    Google Scholar 

  23. Bailey, C. H. and Kandel, E. R. 1993. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55:397-426.

    Google Scholar 

  24. Robinson, T. E., Gorny, G., Mitton, E., and Kolb, B. 2001. Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 39:257-266.

    Google Scholar 

  25. Robinson, T. E. and Kolb, B. 1999. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11:1598-1604.

    Google Scholar 

  26. Norholm, S., Bibb, J. A., Ouimet, C. C., Nestler, E. J., Taylor, J. R., and Greengard, P. 2002 Cocaine-induced proliferation of dendritic spines is dependent on the activity of cyclin-dependent kinase 5. Neuroscience. In Press.

  27. Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., and Greengard, P. 2001. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410:376-380.

    Google Scholar 

  28. Hemby, S. E., Co, C., Koves, T. R., Smith, J. E., and Dworkin, S. I. 1997. Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology 133:7-16.

    Google Scholar 

  29. Di Ciano, P., Blaha, C. D., and Phillips, A. G. 1996. Changes in dopamine oxidation currents in the nucleus accumbens during unlimited-access self-administration of d-amphetamine by rats. Behav. Pharmacol. 7:714-729.

    Google Scholar 

  30. Roberts, D. C. S., Brebner, K., Vincler, M., and Lynch, W. J. 2002 Patterns of cocaine self-administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depend. 67:291-9.

    Google Scholar 

  31. Bozarth, M. A. and Wise, R. A. 1985. Toxicity associated with long-term intravenous heroin and cocaine self-administration in the rat. JAMA 254:81-83.

    Google Scholar 

  32. Gawin, F. H. 1991. Cocaine addiction: psychology and neurophysiology. Science 251:1580-1586.

    Google Scholar 

  33. Pottieger, A. E., Tressell, P. A., Surratt, H. L., Inciardi, J. A., and Chitwood, D. D. 1995. Drug use patterns of adult crack users in street versus residential treatment samples. J. Psychoactive Drugs 27:27-38.

    Google Scholar 

  34. Freeman, W. M., Brebner, K., Lynch, W. J., Robertson, D. J., Roberts, D. C. S., and Vrana, K. E. 2002. Changes in rat frontal cortex gene expression following chronic cocaine. Mol. Brain Res. 14:11-20.

    Google Scholar 

  35. Roberts, D. C. S. and Goeders, N. E. 1989. Drug self-administration: Experimental methods and determinants., pp. 349-398. In: Boulton, A. A., Baker, G. B., and Greenshaw, A. J. (Eds.), Neuromethods: Psychopharmacology, Vol. 13. Humana Press Inc., Clifton, N.J.

    Google Scholar 

  36. Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acidguanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.

    Google Scholar 

  37. Freeman, W. M., Brebner, K., Lynch, W. J., Robertson, D. J., Roberts, D. C. S., and Vrana, K. E. 2001. Cocaine-responsive gene expression changes in rat hippocampus. Neuroscience 108:371-380.

    Google Scholar 

  38. Freeman, W. M., Nader, M. A., Nader, S. H., Robertson, D. J., Gioia, L., Mitchell, S. M., Daunais, J. B., Porrino, L. J., Friedman, D. P., and Vrana, K. E. 2001. Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J. Neurochem. 77:542-549.

    Google Scholar 

  39. Freeman, W. M., Walker, S. J., and Vrana, K. E. 1999. Quantitative RT-PCR: pitfalls and potential. Biotechniques 26:112-115.

    Google Scholar 

  40. Applied Biosystems. 2001 ABI PRISM 7700 Sequence Detection System. User Bulletin #2, 1-36.

  41. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:E45.

    Google Scholar 

  42. O'Neill, R. R., Mitchell, L. G., Merril, C. R., and Rasband, W. S. 1989. Use of image analysis to quantitate changes in form of mitochondrial DNA after x-irradiation. Appl. Theor. Electrophor. 1:163-167.

    Google Scholar 

  43. Spangler, R., Unterwald, E. M., and Kreek, M. J. 1993. 'Binge' cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen. Brain Res. Mol. Brain Res. 19:323-327.

    Google Scholar 

  44. O'Brien, C. P. 1996. Drug Addiction and Drug Abuse, pp. 557-580. In: Hardman, M. J., Gilman, A. G. and Limbird, L. E. (Eds.), The Pharmacological Basis of Therapeutics. McGraw-Hill, New York.

    Google Scholar 

  45. Maruyama, K., Tsukada, T., Ohkura, N., Bandoh, S., Hosono, T., and Yamaguchi, K. 1998. The NGFI-B subfamily of the nuclear receptor superfamily. Int. J. Oncol. 12:1237-1243.

    Google Scholar 

  46. Meinke, G. and Sigler, P. B. 1999. DNA-binding mechanism of the monomeric orphan nuclear receptor NGFI-B. Nat. Struct. Biol. 6:471-477.

    Google Scholar 

  47. Werme, M., Thoren, P., Olson, L., and Brene, S. 1999. Addiction-prone Lewis but not Fischer rats develop compulsive running that coincides with downregulation of nerve growth factor inducible-B and neuron-derived orphan receptor 1. J. Neurosci. 19:6169-6174.

    Google Scholar 

  48. Backman, C. and Morales, M. 2002. Acute methamphetamine administration upregulates NGFI-B mRNA expression in the striatum: Co-localization with C-FOS immunoreactivity. Synapse 44:158-165.

    Google Scholar 

  49. Beaudry, G., Langlois, M. C., Weppe, I., Rouillard, C., and Levesque, D. 2000. Contrasting patterns and cellular specificity of transcriptional regulation of the nuclear receptor nerve growth factor-inducible B by haloperidol and clozapine in the rat forebrain. J. Neurochem. 75:1694-1702.

    Google Scholar 

  50. Werme, M., Ringholm, A., Olson, L., and Brene, S. 2000. Differential patterns of induction of NGFI-B, Nor1 and c-fos mRNAs in striatal subregions by haloperidol and clozapine. Brain Res. 863:112-119.

    Google Scholar 

  51. Zetterstrom, R. H., Williams, R., Perlmann, T., and Olson, L. 1996. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res. Mol. Brain Res. 41:111-120.

    Google Scholar 

  52. Bach, I. 2000. The LIM domain: regulation by association. Mech. Dev. 91:5-17.

    Google Scholar 

  53. Okano, I., Yamamoto, T., Kaji, A., Kimura, T., Mizuno, K., and Nakamura, T. 1993. Cloning of CRP2, a novel member of the cysteine-rich protein family with two repeats of an unusual LIM/double zinc-finger motif. FEBS Lett. 333:51-55.

    Google Scholar 

  54. Jain, M. K., Fujita, K. P., Hsieh, C. M., Endege, W. O., Sibinga, N. E., Yet, S. F., Kashiki, S., Lee, W. S., Perrella, M. A., Haber, E., and Lee, M. E. 1996. Molecular cloning and characterization of SmLIM, a developmentally regulated LIM protein preferentially expressed in aortic smooth muscle cells. J. Biol. Chem. 271:10194-10199.

    Google Scholar 

  55. Weiskirchen, R., Pino, J. D., Macalma, T., Bister, K., and Beckerle, M. C. 1995. The cysteine-rich protein family of highly related LIM domain proteins. J. Biol. Chem. 270:28946-28954.

    Google Scholar 

  56. Louis, H. A., Pino, J. D., Schmeichel, K. L., Pomies, P., and Beckerle, M. C. 1997. Comparison of three members of the cysteinerich protein family reveals functional conservation and divergent patterns of gene expression. J. Biol. Chem. 272:27484-27491.

    Google Scholar 

  57. Weiskirchen, R. and Gressner, A. M. 2000. The cysteine-and glycine-rich LIM domain protein CRP2 specifically interacts with a novel human protein (CRP2BP). Biochem. Biophys. Res. Commun. 274:655-663.

    Google Scholar 

  58. Weiskirchen, R., Moser, M., Weiskirchen, S., Erdel, M., Dahmen, S., Buettner, R., and Gressner, A. M. 2001. LIM-domain protein cysteine-and glycine-rich protein 2 (CRP2) is a novel marker of hepatic stellate cells and binding partner of the protein inhibitor of activated STAT1. Biochem. J. 359:485-496.

    Google Scholar 

  59. Cali, J. J., Zwaagstra, J. C., Mons, N., Cooper, D. M., and Krupinski, J. 1994. Type VIII adenylyl cyclase. A Ca2+/ calmodulin-stimulated enzyme expressed in discrete regions of rat brain. J. Biol. Chem. 269:12190-12195.

    Google Scholar 

  60. Xia, Z. G., Refsdal, C. D., Merchant, K. M., Dorsa, D. M., and Storm, D. R. 1991. Distribution of mRNA for the calmodulinsensitive adenylate cyclase in rat brain: expression in areas associated with learning and memory. Neuron 6:431-443.

    Google Scholar 

  61. Matsuoka, I., Maldonado, R., Defer, N., Noel, F., Hanoune, J., and Roques, B. P. 1994. Chronic morphine administration causes region-specific increase of brain type VIII adenylyl cyclase mRNA. Eur. J. Pharmacol. 268:215-221.

    Google Scholar 

  62. Lane-Ladd, S. B., Pineda, J., Boundy, V. A., Pfeuffer, T., Krupinski, J., Aghajanian, G. K., and Nestler, E. J. 1997. CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J. Neurosci. 17:7890-7901.

    Google Scholar 

  63. Yamamoto, M., Pohli, S., Durany, N., Ozawa, H., Saito, T., Boissl, K. W., Zochling, R., Riederer, P., Boning, J., and Gotz, M. E. 2001. Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res. 895:233-237.

    Google Scholar 

  64. Schaefer, M. L., Wong, S. T., Wozniak, D. F., Muglia, L. M., Liauw, J. A., Zhuo, M., Nardi, A., Hartman, R. E., Vogt, S. K., Luedke, C. E., Storm, D. R., and Muglia, L. J. 2000. Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J. Neurosci. 20:4809-4820.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeman, W.M., Brebner, K., Patel, K.M. et al. Repeated Cocaine Self-Administration Causes Multiple Changes in Rat Frontal Cortex Gene Expression. Neurochem Res 27, 1181–1192 (2002). https://doi.org/10.1023/A:1020929526688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020929526688

Navigation