Skip to main content
Log in

Nitric Oxide Synthetase Activity in Cerebral Post-Ischemic Reperfusion and Effects of L-NG-Nitroarginine and 7-Nitroindazole on the Survival

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nitric Oxide (NO) mediates a series of physiological processes including regulation of vascular tone, macrophage-mediated cytotoxicity, platelet aggregation, learning and long-term potentiation, neuronal transmission. Although NO mediates several physiological functions, overproduction of NO can be detrimental and play multiple roles in the pathophysiology of focal cerebral ischemia. In the present study NOS activities were evaluated in cerebellum and cerebral cortex of ischemic and post-ischemic reperfused rats using an experimental model of partial cerebral ischemia; moreover, the effects of L-NGNitroarginine (NA, nonselective NOS inhibitor) or 7-Nitroindazole (7-NI, selective neuronal NOS inhibitor) administration were assayed on percentage survival of ischemic rats. An increase of NOS activity in the cerebellum and in cerebral cortex of ischemic and post-ischemic reperfused rats was observed. NA administration failed to induce neuroprotective effects, by increasing percentage of mortality of treated ischemic rats with respect to control group. In contrast, the treatment with the selective neuronal NOS inhibitor, 7-NI, induced a significant neuroprotective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Garthwaite, J. 1991. Glutamate nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14: 60–67.

    Google Scholar 

  2. Umans, J. G. and Levi, R. 1995. Nitric oxide in the regulation of blood flow and arterial pressure. Ann. Rev. Physiol. 57: 771–790.

    Google Scholar 

  3. Zhang, J. and Snyder, S. H. 1995. Nitric Oxide in the Nervous System. Ann. Rev. Pharmacol. Toxicol. 35: 213–233.

    Google Scholar 

  4. Moncada, S., Palmer, R. M. J. and Higgs, E. A. 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109–142.

    Google Scholar 

  5. Bredt, D. S. and Snyder, S. H. 1994. Nitric oxide: A physiologic messenger molecule. Ann. Rev. Biochem. 63: 175–195.

    Google Scholar 

  6. Bredt, D. S. and Snyder, S. H. 1989. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86: 9030–9033.

    Google Scholar 

  7. Boje, K. M. and Arora, P. K. 1992. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res. 587: 250–256.

    Google Scholar 

  8. Murphy, S., Minor, R. L. Jr, Wel, G. and Harrison, D. 1990. Evidence for an astrocyte-derived vasorelaxing factor with properties similar to nitric oxide. J. Neurochem. 55: 349–351.

    Google Scholar 

  9. Galea, E., Feinstein, D. and Reis, D. 1992. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA. 89: 10945–10949.

    Google Scholar 

  10. Bath, P. M. W., Hassall, D. G., Gladwin, A. M., Palmer, R. M. J., and Martin, J. F. 1991. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis adhesion to endothelium in vitro. Arterioscler. Thromb. 11: 254–260.

    Google Scholar 

  11. Lipton, S. A. and Rosemberg, P. A. 1994. Excitatory aminoacid as a final common pathway for neurologic disorder. N. Engl. J. Med. 330: 613–622.

    Google Scholar 

  12. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., Snyder, S.H. 1991. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. USA 88: 6368–6371.

    Google Scholar 

  13. Dawson, D. A. 1994. Nitric oxide and focal cerebral ischemia: multiplicity of actions and diverse outcome. Cerebrovasc. Brain Metab. Rev. 6: 299–324.

    Google Scholar 

  14. Noll, F. 1984. pages 582–588, in Bergmeyer H. U. (ed.), Methods of Enzymatic Analysis, vol. 6, Ferlag Chemie, Weinheim, Germany.

    Google Scholar 

  15. Bancroft, J. D., Stevens, A. and Turner, D. R. 1990. Cap. 17: Neuropathological technique. pages 343–378. in Churchill Livingstone (ed.), Theory and practice of histological techniques. London.

  16. Perry, T. L., Stedman, D. and Hansen, S. 1968. A versatile lithium buffer elution system for single column automatic amino acid chromatography. J. Chromatogr. 38: 460–466.

    Google Scholar 

  17. Lowry, O. H., Rosenbrough, N. J., Farr, A. J., Randall, R. G. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  18. Brenman, J. E., Xia, H. Cihao, D. S., Black, S. M. and Bredt, D. S. 1997. Regulation of neuronal nitric oxide synthase through alternative transcripts. Dev. Neurosci. 19: 224–231.

    Google Scholar 

  19. Gehrmann, J., Bonnekoh, P., Miyazawa, T., Hossman, K. and Kreutzberg, G. 1992. Immunocytochemical study of an early microglial activation in ischemia. J. Cerebr. Blood Flow Metab. 12: 257–269.

    Google Scholar 

  20. Colton, A. and Gilbert, D. 1987. Production of superoxide by a CNS macrophage, the microglia. FEBS Lett. 223: 284–288.

    Google Scholar 

  21. Vanella, A., Sorrenti, V., Castorina, C., Campisi, A., Di Giacomo, C., Russo A. and Perez-Polo, J. R. 1992. Lipid peroxidation in rat cerebral cortex during post-ischemic reperfusion: effect of exogenous antioxidants and Ca++-antagonist drugs. Int. J. Devl. Neurosci. 10: 75–80.

    Google Scholar 

  22. Sorrenti, V., Di Giacomo, C., Renis, M., Russo, A., La Delfa, C., Perez-Polo, J. R., Vanella, A. 1994. Lipid peroxidation and survival in rats following cerebral post-ischemic reperfusion: effect of drugs with different molecular mechanisms. Drugs Exptl. Clin. Res. 20: 185–189.

    Google Scholar 

  23. Martinez, G., Carnazza, M. L., Di Giacomo, C., Sorrenti, V., Gastana, R., Pennisi, G., Perez-Polo, J. R., and Vanella, A. 1996. Neuronal lesions and behavioral modifications in rat following cerebral ischemia and reperfusion. Neurochem. Res. 21: 667–674.

    Google Scholar 

  24. Martinez, G., Carnazza, M. L., Di Giacomo, C., Sorrenti, V., Avitabile, M. and Vanella, A. 1998. GFAP, S-100 and vimentin proteins in rat after cerebral post-ischemic reperfusion. Int. J. Devl. Neurosci. 16: 1–8.

    Google Scholar 

  25. Nowicki, J. P., Duval, D., Poignet, H. and Scatton, B. 1991. Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur. J. Pharmacol. 204: 339–340.

    Google Scholar 

  26. Buisson, A., Plotchine, M. and Boulu, R. G. 1992. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. Br. J. Pharmacol. 106: 766–767.

    Google Scholar 

  27. Moncada, C., Lekieffre, D., Arvin, B. and Meldrum, B., 1992. Effect of NO synthase inhibition on NMDA and ischemia-induced hippocampal lesions. NeuroReport 3: 530–532.

    Google Scholar 

  28. Dawson, D., Kasumoto, K., Graham, J., McCulloch, J., and MacRae, I. 1992. The Nitric oxide synthase inhibitor L-NAME does not reduce ischaemic damage in a rat model of focal cerebral ischaemia. Neurosci. Lett. 142: 151–154.

    Google Scholar 

  29. Huang, Z., Huang, P. L., Fishman, M. C. and Moskowitz, M. A. 1996. Focal cerebral ischemia in mice deficient in either endothelial (eNOS) or neuronal nitric oxide (nNOS) synthase. (Abstr). Stroke 27: 273.

    Google Scholar 

  30. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C. and Moskowitz, M.A. 1994. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265: 1883–1885.

    Google Scholar 

  31. Hara, H., Huang, P.L., Panahian, N., Fishman, M.C. and Moskowitz, M. A. 1996. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow Metab. 16: 605–611.

    Google Scholar 

  32. Yoshida, T., Limmoroth, V., Irikura, K. and Moskowitz, M. A. 1994. The NOS inhibitor, 7-Nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J. Cereb. Blood Flow Metab. 14: 924–929.

    Google Scholar 

  33. Babbedge, R. C., Bland-Ward, P. A., Hart, S. L. and Moore, P. K. 1993. Inhibition of nitric oxide synthase by 7-nitro indazole and related substituted indazoles. Br. J. Pharmacol. 110: 225–228.

    Google Scholar 

  34. Escott, K. J., Beech, J. S., Haga, K. K., Williams, S. C. R., Meldrum, B. S. and Bath, P. M. W. 1998. Cerebroprotective effect of the nitric oxide synthase inhibitors, 1-(2-trifluoromethyl-phenyl) imidazole and 7-Nitro indazole, after transient focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 18: 281–287.

    Google Scholar 

  35. Chalimoniuk, M., Strosznajder, J. 1998 NMDA Receptor-dependent Nitric oxide and cGMP synthesis in brain hemispheres and cerebellum during reperfusion after transient forebrain ischemia in Gerbils: effect of 7-Nitroindazole. J. Neurosci. Res. 54: 681–690.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrenti, V., Giacomo, C.D., Campisi, A. et al. Nitric Oxide Synthetase Activity in Cerebral Post-Ischemic Reperfusion and Effects of L-NG-Nitroarginine and 7-Nitroindazole on the Survival. Neurochem Res 24, 861–866 (1999). https://doi.org/10.1023/A:1020906030328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020906030328

Navigation