Skip to main content
Log in

Bose–Einstein Condensation and the λ Transition in Liquid Helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Integrating seminal ideas of London, Feynman, Uhlenbeck, Bloch, Bardeen, and other illustrious antecessors, this paper continues the development of an ab initio theory of the λ transition in liquid 4He. The theory is based upon variational determination of a correlated density matrix suitable for description of both normal and superfluid phases, within an approach that extends to finite temperatures the very successful correlated wave-functions theory of the ground state and elementary excitations at zero temperature. We present the results of a full optimization of a correlated trial form for the density matrix that includes the effects both of temperature-dependent dynamical correlations and of statistical correlations corresponding to thermal phonon/roton and quasiparticle/hole excitations—all at the level of two-point descriptors. The optimization process involves constrained functional minimization of the associated free energy through solution of a set of Euler–Lagrange equations, consisting of a generalized paired-phonon equation for the structure function, an analogous equation for the Fourier transform of the statistical exchange function, and a Feynman equation for the dispersion law of the collective excitations. Violation of particle-hole exchange symmetry emerges as an important aspect of the transition, along with broken gauge symmetry. In conjunction with a semi-phenomenological study in which renormalized masses are introduced for quasiparticle/hole and collective excitations, the results suggest that a quantitative description of the λ transition and associated thermodynamic quantities can be achieved once the trial density matrix is modified—notably through the addition of three-point descriptors—to include backflow effects and allow for ab initio treatment of important variations in effective masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Kapitza, Nature 141, 74 (1938).

    Google Scholar 

  2. J. F. Allen and A. D. Misener, Nature 141, 75 (1938).

    Google Scholar 

  3. F. London, Nature 141, 643 (1938).

    Google Scholar 

  4. F. London, Phys. Rev. 54, 947 (1938).

    Google Scholar 

  5. L. Tisza, Nature 141, 913 (1938).

    Google Scholar 

  6. L. Tisza, Phys. Rev. 72, 838 (1947).

    Google Scholar 

  7. L. D. Landau, Zh. Eksp. Teor. Fiz. 11, 592 (1941); J. Phys. USSR 5, 71 (1941).

    Google Scholar 

  8. R. P. Feynman, Phys. Rev. 91, 1291 (1953).

    Google Scholar 

  9. C. E. Campbell, K. E. Kürten, M. L. Ristig, and G. Senger, Phys. Rev. B 30, 3728 (1984).

    Google Scholar 

  10. C. E. Campbell and E. Feenberg, Phys. Rev. 188, 396 (1969).

    Google Scholar 

  11. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969).

    Google Scholar 

  12. E. Feenberg, Ann. Phys. (NY) 84, 128 (1974).

    Google Scholar 

  13. R. M. Ziff, G. E. Uhlenbeck, and M. Kac, Phys. Rep. 32, 169 (1977).

    Google Scholar 

  14. C. E. Campbell, Phys. Lett. A 44, 471 (1973).

    Google Scholar 

  15. C. E. Campbell, in Recent Progress in Many-Body Theories, Vol. 4, E. Schachinger, H. Mitter, and H. Sormann (eds.), Plenum, New York (1995), p. 29.

    Google Scholar 

  16. D. M. Ceperley and E. L. Pollock, Phys. Rev. Lett. 56, 351 (1986).

    Google Scholar 

  17. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Google Scholar 

  18. S. Fantoni and S. Rosati, Nuovo Cimento A 25, 593 (1975).

    Google Scholar 

  19. E. Krotscheck and M. L. Ristig, Nucl. Phys. A 242, 389 (1975).

    Google Scholar 

  20. K. Hiroike, Prog. Theor. Phys. 24, 317 (1960).

    Google Scholar 

  21. M. L. Ristig, T. Lindenau, M. Serhan, and J. W. Clark, J. Low Temp. Phys. 114, 317 (1999).

    Google Scholar 

  22. C. E. Campbell, private communication.

  23. J. Bardeen, Physics Today 16, 21 (January 1963); quoted in Physics Today 51, 66 (May 1998).

    Google Scholar 

  24. G. Senger, M. L. Ristig, K. E. Kürten, and C. E. Campbell, Phys. Rev. B 33, 7562 (1986).

    Google Scholar 

  25. G. Senger, M. L. Ristig, C. E. Campbell, and J. W. Clark, Ann. Phys. (N.Y.) 218, 116 (1992).

    Google Scholar 

  26. M. L. Ristig, G. Senger, M. Serhan, and J. W. Clark, Ann. Phys. (N.Y.) 243, 247 (1995).

    Google Scholar 

  27. J. W. Clark, M. L. Ristig, T. Lindenau, and M. Serhan, in Condensed Matter Theories, Vol. 12, J. W. Clark and P. V. Panat (eds.), Nova Science Publishers, Commack, NY (1997), p. 55.

    Google Scholar 

  28. M. L. Ristig, T. Lindenau, M. Serhan, and J. W. Clark, in Condensed Matter Theories, Vol. 13, J. da Providencia and F. B. Malik (eds.), Nova Science Publishers, Commack, NY (1998), p. 119.

    Google Scholar 

  29. T. Lindenau, Doctoral thesis, Universität zu Köln, Shaker Verlag, Aachen (1999).

  30. R. P. Feynman, Phys. Rev. 94, 262 (1954).

    Google Scholar 

  31. E. Krotscheck, in 150 Years of Quantum Many-Body Theory, R. F. Bishop, K. A. Gernoth, and N. R. Walet (eds.), World Scientific, Singapore (2001).

    Google Scholar 

  32. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  33. J. W. Clark, in Progress in Particle and Nuclear Physics, Vol. 2, D. Wilkinson (ed.), Pergamon, Oxford (1979), p. 89.

    Google Scholar 

  34. R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville, J. Chem. Phys. 70, 4330 (1979).

    Google Scholar 

  35. R. P. Feynman, Statistical Mechanics, Benjamin, Reading (1972), p. 318.

    Google Scholar 

  36. E. Krotscheck, in Lecture Notes in Physics, Vol. 510, J. Navarro and A. Polls (eds.), Springer, Heidelberg (1998).

    Google Scholar 

  37. K. Schmidt, M. H. Kalos, Michael A. Lee, and G. V. Chester, Phys. Rev. Lett. 45, 573 (1980).

    Google Scholar 

  38. R. K. Crawford, in Rare Gas Solids, Vol. 2, M. L. Klein and J. A. Venables (eds.), Academic Press, New York (1976).

    Google Scholar 

  39. R. Pantförder, T. Lindenau, and M. L. Ristig, J. Low Temp. Phys. 108, 245 (1997).

    Google Scholar 

  40. T. Lindenau, M. L. Ristig, and J. W. Clark, in Condensed Matter Theories, Vol. 14, D. Ernst, I. Perakis, and S. Umar (eds.), Nova Science Publishers, Huntington, New York (1999), p.131.

    Google Scholar 

  41. M. H. Kalos, M. A. Lee, P. A. Whitlock, and G. V. Chester, Phys. Rev. B 24, 115 (1981).

    Google Scholar 

  42. S. Vitiello, K. Runge, and M. H. Kalos, Phys. Rev. Lett. 60, 1970 (1988).

    Google Scholar 

  43. L. Reatto and G. L. Masserini, Phys. Rev. B 38, 4516 (1988).

    Google Scholar 

  44. R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956).

    Google Scholar 

  45. B. E. Clements, E. Krotscheck, J. A. Smith, and C. E. Campbell, Phys. Rev. B 47, 5239 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindenau, T., Ristig, M.L., Clark, J.W. et al. Bose–Einstein Condensation and the λ Transition in Liquid Helium. Journal of Low Temperature Physics 129, 143–170 (2002). https://doi.org/10.1023/A:1020844106524

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020844106524

Keywords

Navigation