Skip to main content
Log in

A comparison of genetic diversity between the Galápagos Penguin and the Magellanic Penguin

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Galápagos Penguin (Spheniscusmendiculus) is a United States federallylisted endangered species with populations onthe Galápagos Islands of Fernandina andIsabela. Although the waters around theislands are normally productive, lowproductivity during El Niño years resultsin high adult penguin mortality and lowrecruitment in following years. We usedmicrosatellite markers developed for Spheniscus penguins to study the long termgenetic effects of serial bottleneck events inthe Galápagos Penguin, and compared thisvariation to that of its congener, theMagellanic penguin (Spheniscusmagellanicus). The observed heterozygosityfor the Galápagos Penguin was 3%,significantly lower than the 46%heterozygosity of the Magellanic Penguin. Thislow level of heterozygosity is directly relatedto its low effective population size. Whilethis population has survived long term,presumably without high levels of geneticvariation, we feel that the greater frequencyof El Niño events, coupled with increasedhuman impacts such as introduced disease, oildischarge, and competition with fisheries, mayput the species in particular danger ofextinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armour JAL, Neumann R, Gobert S, Jeffreys AJ (1994) Isolation of human simple repeat loci by hybridization selection. Hum. Mol. Gen., 3, 599–605.

    Google Scholar 

  • Barber R, Chavez F (1983) Biological consequences of El Niño. Science, 222, 1203–1210.

    Google Scholar 

  • Boersma PD (1976) An ecological and behavioral study of the Galápagos penguin. The Living Bird, 15, 43–93.

    Google Scholar 

  • Boersma PD (1978) Galápagos penguins as indicators of oceanographic conditions. Science, 200, 1481–1483.

    Google Scholar 

  • Boersma PD (1998a) Population trends of the Galápagos Penguin: Impacts of El Niño and La Niña. The Condor, 100, 245–253.

    Google Scholar 

  • Boersma PD (1998b) The 1997–1998 El Niño: Impacts on penguins. Penguin Cons., 11, 10–19.

    Google Scholar 

  • Boersma PD, Stokes DL, Yorio P (1990) Reproductive variability and historical change of Magellanic Penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. In: Biology of Penguins (eds. Davis L, Darby J), pp. 15–43. MacMillan, New York.

    Google Scholar 

  • Boersma PD, Parrish J (1999) Limiting abuse: marine protected areas, a limited solution. Ecol. Econ., 31, 287–304.

    Google Scholar 

  • Chakraborty R, Kimmel M, Stivers DN, Davson J, Deka R (1997) Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl. Acad. Sci. USA., 94, 1041–1046.

    Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1998) Birth weight and neonatal survival of harbour seal pups and positively correlated with genetic variation measured by microsatellites. Proc. R. Soc. Lond. B., 265, 803–809.

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.

    Google Scholar 

  • Cranfield MR, Graczyk TK, Beall FB, Ialeggio DM, Shaw ML, Skjoldager ML (1994) Subclinical avian malaria in African black-footed penguins (Spheniscus demersus) and induction of parasite recrudescence. J Wildlife Dis., 30, 372–376.

    Google Scholar 

  • Dallas JF (1992) Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mam. Genome, 3, 452–456.

    Google Scholar 

  • Delany MF, Giesel JT, Brazeau DA (2000) Genetic variability among populations of the Florida grasshopper sparrow. JWildlife Man., 64, 631–636.

    Google Scholar 

  • DiRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA, 91, 3166–3170.

    Google Scholar 

  • Ellegren H, Carlson A, Stenberg I (1999) Genetic structure and variability of white-backed woodpecker (Dendrocopos leucotos) populations in northern Europe. Heredita., 130, 291–299.

    Google Scholar 

  • Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon B (1997) Microsatellite evolution – A reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol. Biol. Evol., 14, 854–860.

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Small populations: II Less simplified conditions. In: Introduction to Quantitative Genetics, pp. 65–81. Longman, Essex.

    Google Scholar 

  • Fleischer RC, Loew S (1995) Construction and screening of microsatellite-enriched genomic libraries. In: Molecular Zoology: Advances, Strategies and Protocols (eds. Ferraris J, Palumbi S), pp. 459–468. Wiley-Liss, New York.

    Google Scholar 

  • Fleischer R, McIntosh C, Tarr C (1998) Evolution on a volcanic conveyor belt: using phylogeographic reconstructions and KAr based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Mol. Ecol., 7, 533–545.

    Google Scholar 

  • Frankham R (1995a) Conservation genetics. Ann. Rev. Gen., 29, 305–327.

    Google Scholar 

  • Frankham R (1995b) Inbreeding and extinction: a threshold effect. Cons. Bio., 9, 792–799.

    Google Scholar 

  • Frankham R (1995c) Effective population size/adult population size ratios in wildlife: a review. Genet. Res., 66, 95–107.

    Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Cons. Bio., 12, 665–675.

    Google Scholar 

  • Gandini P, Frere E, Boersma PD (1996) Status and conservation of Magellanic penguins Spheniscus magellanicus in Patagonia, Argentina. Bird Cons. Intl., 6, 307–316.

    Google Scholar 

  • Haig SM, Avise JC (1996) Avian conservation genetics. In: Conservation genetics: case histories from nature (eds. Avise J, Hamrick J), pp. 160–189. Chapman and Hall, New York.

    Google Scholar 

  • Hamilton MB, Pincus EL, DiFiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites, Biotechniques, 27, 500–507.

    Google Scholar 

  • Hoyo J, Elliot A, Sargatal J (eds.) (1992) Handbook of Birds of the World: Volume 1. Lynx Edicions, Barcelona.

    Google Scholar 

  • Hudson QJ, Wilkins RJ, Waas JR, Hogg ID (2000) Low genetic variability in small populations of New Zealand kokako Callaeas cinerea wilsoni. Biol. Cons., 96, 105–112.

    Google Scholar 

  • Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA, 75, 2868–2872.

    Google Scholar 

  • Klicka J, Zink R (1997) The importance of recent ice ages in speciation: a failed paradigm. Science, 277, 1666–1669.

    Google Scholar 

  • Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution, 50, 434–437.

    Google Scholar 

  • Lehmann T, Hawley WA, Grebert H, Collins FH (1998) The effective population size of Anopholes gambiae in Kenya: implications for population structure. Mol. Biol. Evol., 15, 264–276.

    Google Scholar 

  • Ludwig D (1996) The distribution of population survival times. Am. Nat., 147, 506–526.

    Google Scholar 

  • Menotti-Ramond, MA, O'Brien SJ (1995) Evolutionary conservation of ten microsatellite loci in four species of Felidae. J. Heredity, 86, 319–322.

    Google Scholar 

  • Mills KL, Vargas H (1997) Current status, analysis of census methodology, and conservation of the Galápagos Penguin, Spheniscus mendiculus. Noticias de Galápagos, 58, 8–15.

    Google Scholar 

  • Mundy NI, Winchell CS, Burr T, Woodruff DS (1997) Microsatellite variation and microevolution in the critically endangered San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi). Proc. R. Soc., 869–875.

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University, New York.

    Google Scholar 

  • Nichols RA, Bruford MW, Groombridge JJ (2001) Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Mol. Ecol., 10, 593–602.

    Google Scholar 

  • Palmer AR (1994) Fluctuating asymmetry analyses: a primer. In: Developmental Instability: Its Origins and Evolutionary Implications (ed. Markow TA), pp. 335–364. Kluwer Academic, Netherlands.

    Google Scholar 

  • Paterson S, Wilson K, Pemberton JM (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proc. Natl. Acad. Sci. USA, 95, 3714–3719.

    Google Scholar 

  • Pimm SL (1991) Extinctions. In: The Balance of Nature, pp. 135–167. University of Chicago, Chicago.

    Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: A program for detecting recent effective population size reductions from allele frequency data. J. Heredity. 90, 502–503.

    Google Scholar 

  • Quinn W, Neal V (1987) El Niño occurrences over the past four and a half centuries. J. Geophys. Res., 92, 14449–14461.

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2). Population genetics software for exact tests and ecumenicism. J. Heredity, 86, 248–249.

    Google Scholar 

  • Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol. Ecol., 9, 1517–1528.

    Google Scholar 

  • Stokes DL, Boersma PD (1998) Nest-Site Characteristics and Reproductive Success in Magellanic Penguins (Spheniscus magellanicus). The Auk, 115, 34–49.

    Google Scholar 

  • Tarr CL, Conant S, Fleischer RC (1998) Founder events and variation atmicrosatellite loci in an insular passerine bird, the Laysan finch (Telespiza cantans). Mol. Ecol., 7, 719–731.

    Google Scholar 

  • Tarr CL, Fleischer RC (1999) Population boundaries and genetic diversity in the endangered Mariana crow (Corvus kubaryi). Molecular Ecology, 8, 941–949.

    Google Scholar 

  • Van Den Bussche R, Harmon S, Baker R, Bryan A Jr., Rodgers J, Harris M, Bisbin I Jr. (1999) Low levels of genetic variability in North American populations of the Wood Stork (Mycteria Americana). The Auk, 116, 1083–1092.

    Google Scholar 

  • Vargas H (1999) El Niño update. La Carta. Summer. Charles Darwin Foundation. Falls Church, Virginia.

    Google Scholar 

  • Vargas H (2000) Efectos de El Niño en los pinguinos de Galápagos y tendencia poblacional. Abstract in The Fourth International Penguin Conference, pp. 33–34.

  • Vrijenhoek RC (1994) Genetic diversity and fitness in small populations. In: Conservation Genetics (eds. Lowschcke V, Tomiuk J, Jain SK), pp. 37–53. Bikhauser Varieg, Basel.

    Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Human Mol. Gen., 2, 1123–1128.

    Google Scholar 

  • Wells L (1987) An alluvial record of El Niño events from Northern coastal Peru. J. Geophys. Res., 92, 14463–14470.

    Google Scholar 

  • Williams T (1995) Spheniscidae. In: The Penguins. Oxford UP, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine P. Akst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akst, E.P., Boersma, P.D. & Fleischer, R.C. A comparison of genetic diversity between the Galápagos Penguin and the Magellanic Penguin. Conservation Genetics 3, 375–383 (2002). https://doi.org/10.1023/A:1020555303124

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020555303124

Navigation