Skip to main content
Log in

Locality in the Everett Interpretation of Quantum Field Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Recently it has been shown that transformations of Heisenberg-picture operators are the causal mechanism which allows Bell-theorem-violating correlations at a distance to coexist with locality in the Everett interpretation of quantum mechanics. A calculation to first order in perturbation theory of the generation of EPRB entanglement in nonrelativistic fermionic field theory in the Heisenberg picture illustrates that the same mechanism leads to correlations without nonlocality in quantum field theory as well. An explicit transformation is given to a representation in which initial-condition information is transferred from the state vector to the field operators, making the locality of the theory manifest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195–200 (1964), reprinted in J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  2. H. Everett III, “Relative state' formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454–462 (1957). Reprinted in B. S. DeWitt and N. Graham, eds., The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1973).

    Google Scholar 

  3. H. P. Stapp, “Locality and reality,” Found. Phys. 10, 767–795 (1980).

    Google Scholar 

  4. H. P. Stapp, “Bell's theorem and the foundations of quantum mechanics,” Am. J. Phys., 306–317 (1985).

  5. H. D. Zeh, “On the interpretation of measurement in quantum theory,” Found. Phys. 1, 69–76 (1970).

    Google Scholar 

  6. D. N. Page, “The Einstein-Podolsky-Rosen physical reality is completely described by quantum mechanics,” Phys. Lett. A 91, 57–60 (1982).

    Google Scholar 

  7. F. J. Tipler, “The many-worlds interpretation of quantum mechanics in quantum cosmology,” in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham, eds. (Oxford University Press, New York, 1986).

    Google Scholar 

  8. D. Albert and B. Loewer, “Interpreting the many-worlds interpretation,” Synthese 77, 195–213 (1988).

    Google Scholar 

  9. D. Z. Albert, Quantum Mechanics and Experience (Harvard University Press, Cambridge, MA, 1992).

    Google Scholar 

  10. L. Vaidman, “On the paradoxical aspects of new quantum experiments,” in PSA 1994: Proceedings of the 1994 Biennial Meeting of the Philosophy of Science Association, D. Hull et al., eds. (Philosophy of Science Association, East Lansing, MI, 1994), Vol. 1, pp. 211–217.

    Google Scholar 

  11. M. C. Price, “The Everett FAQ,” http://www.hedweb.com/manworld.htm (1995).

  12. M. Lockwood, “'Many minds' interpretations of quantum mechanics,” Brit. J. Phil. Sci. 47, 159–188 (1996).

    Google Scholar 

  13. D. Deutsch, “Reply to Lockwood,” Brit. J. Phil. Sci. 47, 222–228 (1996).

    Google Scholar 

  14. L. Vaidman, “On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory,” Int. Stud. Phil. Sci. 12, 245–261 (1998); quant-ph/9609006.

    Google Scholar 

  15. F. J. Tipler, “Does quantum nonlocality exist? Bell's theorem and the many-worlds interpretation,” quant-ph/0003146 (2000).

  16. D. Deutsch, “The structure of the multiverse,” quant-ph/0104033 (2001).

  17. L. Vaidman, “The many-worlds interpretation of quantum mechanics,” http://www.tau. ac.il/'vaidman/mwi/mw2.html (2001).

  18. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of reality be considered complete?” Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  19. D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, NJ, 1951).

    Google Scholar 

  20. D. Deutsch, “Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1–41 (1985).

    Google Scholar 

  21. D. Deutsch and P. Hayden, “Information flow in entangled quantum systems,” Proc. R. Soc. Lond. A 456, 1759–1774 (2000); quant-ph/9906007.

    Google Scholar 

  22. M. A. Rubin, “Locality in the Everett interpretation of Heisenberg-picture quantum mechanics,” Found. Phys. Lett. 14, 301–322 (2001); quant-ph/0103079.

    Google Scholar 

  23. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th revised edn. (Oxford University Press, London, 1967).

    Google Scholar 

  24. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row & Peterson, Evanston, IL, 1961).

    Google Scholar 

  25. A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  26. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131–1143 (1990).

    Google Scholar 

  27. M. Horodecki, “Entanglement measures,” Quantum Information and Computation 1, 3–26 (2001).

    Google Scholar 

  28. G. Källén, Quantum Electrodynamics (Springer, New York, 1972).

    Google Scholar 

  29. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (Dover, Mineola, NY, 2000), p. 205.

    Google Scholar 

  30. P. A. Teller, An Interpretive Introduction to Quantum Field Theory (Princeton University Press, Princeton, NJ, 1995), pp. 98, 102–3.

    Google Scholar 

  31. B. S. DeWitt, “The many-universes interpretation of quantum mechanics,” in Proceedings of the International School of Physics “Enrico Fermi” Course IL: Foundations of Quantum Mechanics (Academic, New York, 1972). Reprinted in B. S. DeWitt and N. Graham, eds., The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1973).

    Google Scholar 

  32. M. Veltman, Diagrammatica: The Path to Feynman Diagrams (Cambridge University Press, Cambridge, 1994), p. 222.

    Google Scholar 

  33. W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: A measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001); quant-ph/0102119.

    Google Scholar 

  34. J. Schleimann, D. Loss, and A. H. MacDonald, “Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots,” Phys. Rev B 63, 085311 (2001).

    Google Scholar 

  35. J. Schleimann, J. I. Cirac, M. Kus, M. Lewenstein, and D. Loss, “Quantum correlations in two-fermion systems,” Phys. Rev. A 64, 022303 (2001); quant-ph/0012094 (2001).

    Google Scholar 

  36. Y. S. Li, B. Zeng, X. S. Liu, and G. L. Long, “Entanglement in a two-identical-particle system,” Phys. Rev. A 64, 0543021 (2001); quant-ph/0104101 (2001).

    Google Scholar 

  37. P. Zanardi, “Entangled fermions,” quant-ph/0104114 (2001).

  38. Y. Omar, N. Paunković, S. Bose, and V. Vedral, “spin-space entanglement transfer and quantum statistics,” quant-ph/0105120 (2001).

  39. R. Paškauskas and L. You, “Quantum correlations in two-boson wavefunctions,” quantph/ 0106117 (2001).

  40. H.-Y. Fan and Z.-B. Chen, “Einstein-Podolsky-Rosen entanglement for self-interacting complex scalar fields,” J. Phys. A 34, 1853–1859 (2001).

    Google Scholar 

  41. J. Schleimann and D. Loss, “Entanglement and quantum gate operations with spin-qubits in quantum dots,” cond-mat/0110150 (2001).

  42. N. Paunković, Y. Omar, S. Bose, and V. Vedral, “Entanglement concentration using quantum statistics,” quant-ph/0112004 (2001).

  43. S. Bose and D. Home, “Generic entanglement generation, quantum statistics and complementarity,” Phys. Rev. Lett. 88, 050401 (2002); quant-ph/0101093.

    Google Scholar 

  44. P. Zanardi and X. Wang, “Fermionic entanglement in itinerant systems,” quant-ph/ 0201028 (2002).

  45. J. R. Gittings and A. J. Fisher, “Describing mixed spin-space entanglement of pure states of indistinguishable particles using an occupation number basis,” quant-ph/0202051 (2002).

  46. G. Ghirardi, L. Marinatto, and T. Weber, “Entanglement and properties of composite quantum systems: a conceptual and mathematical analysis,” quant-ph/0109017 (2002).

  47. K. Eckert, J. Schleimann, D. Bruß, and M. Lewenstein, “Quantum correlations in systems of indistinguishable particles,” quant-ph/0203060 (2002).

  48. J. Pachos and E. Solano, “Generation and degree of entanglement in a relativistic formulation,” quant-ph/0203065 (2002).

  49. J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965), Chap. 5.

    Google Scholar 

  50. A. Kent, “Locality and reality revisited,” quant-ph/0202064 (2002).

  51. E. Galvão and L. Hardy, “substituting a qubit for an arbitrarily large amount of classical information,” quant-ph/0110166 (2002).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, M.A. Locality in the Everett Interpretation of Quantum Field Theory. Foundations of Physics 32, 1495–1523 (2002). https://doi.org/10.1023/A:1020477902039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020477902039

Navigation