Skip to main content
Log in

Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

By pyrolysis of iron phthalocyanine (FePc), either in a patterned or non-patterned fashion, under an Ar/H2 atmosphere, we have demonstrated the large-scale production of aligned carbon nanotubes perpendicular to the substrate surface useful for building devices with three-dimensional structures. Depending on the particular pyrolytic conditions used, carbon nanotubes with a wide range of microscopic structures having curved, helical, coiled, branched, and tube-within-tube shapes have also been prepared by the pyrolysis of FePc. This, coupled with several microfabrication methods (photolithography, soft-lithography, self-assembling, micro-contact transfer, etc.), has enabled us to produce carbon nanotube arrays of various macroscopic architectures including polyhedral, flower-like, dendritic, circular, multilayered, and micropatterned geometries. In this article, we summarize our work on the preparation of FePc-generated carbon nanotubes with the large variety of microscopic and macroscopic structures and give a brief overview on the perspectives of making carbon nanotubes with tailor-made microscopic/macroscopic structures, and hence well-defined physicochemical properties, for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajayan P.M., O. Stephan, C. Collix &; D. Trauth, 1994. Science 265, 1212.

    Google Scholar 

  • Ajayan P.M. &; T.W. Ebbesen, 1997. Rep. Prog. Phys. 60, 1025.

    Google Scholar 

  • Ajayan P.M., 1999. Chem. Rev. 99, 1787.

    Google Scholar 

  • Amelinckx S, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov &; J.B. Nagy, 1994. Science 265, 635.

    Google Scholar 

  • Bandow S., F. Kokai, K. Takahashi, M. Yudasaka, L.C. Qin &; S. Iijima, 2000. Chem. Phys. Lett. 321(5-6), 514.

    Google Scholar 

  • Baughman R.H., C. Changxing, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. de Rossi, A.G. Rinzler, O. Jaschinski, S. Roth & M. Kertesz, 1999. Science 284, 1340.

    Google Scholar 

  • Bethune D.S., C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez &; R. Bayers, 1993. Nature 363, 605.

    Google Scholar 

  • Bockrath M.D.H., P.L. Cobden, N. McEuen, A. Chopra, A. Zettl, A.R. Thess &; R.E. Smalley, 1997. Science 275, 1922.

    Google Scholar 

  • Che G., B.B. Lakshmi, E.R. Fisher &; C.R. Martin, 1998. Nature 393, 346.

    Google Scholar 

  • Chen Q. &; L. Dai, 2000. Apply. Phys. Lett. 76, 2719.

    Google Scholar 

  • Chen Q. &; L. Dai, 2001. J. Nanosci. Nanotechnol. 1, 43.

    Google Scholar 

  • Collins P.G., K. Bradley, M. Ishigami &; A. Zettl, 2000. Science 287, 1801.

    Google Scholar 

  • Dai H., E.W. Wong &; C.M. Lieber, 1996. Science 272, 523.

    Google Scholar 

  • Dai H.J., J.H. Hafner, A.G. Rinzler, D.T. Colbert &; R.E. Smalley, 1996. Nature 384, 147.

    Google Scholar 

  • Dai H., J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan &; M. Chapline, 1999. J. Phys. Chem. B 103, 11246.

    Google Scholar 

  • Dai L., 1999. J. Macromol. Sci., Rev. Macromol. Chem. Phys. 39, 273.

    Google Scholar 

  • Dai L., 1999. Polym. Adv. Technol. 10, 357.

    Google Scholar 

  • Dai L. &; A.W.H. Mau, 2000. J. Phys. Chem. 104, 1891.

    Google Scholar 

  • de Heer W.A., A. Chatelain &; D. Ugarte, 1995. Science 270, 1179.

    Google Scholar 

  • de Heer W.A., J.M. Bonard, K. Fauth, A. Chatelain, L. Forro &; D. Ugarte, 1997. Adv. Mater. 9, 87.

    Google Scholar 

  • Dresselhaus M.S., G. Dresselhaus &; P.C. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes, Academic Press, New York.

    Google Scholar 

  • Ebbesen T.W. &; P.M. Ajayan, 1992. Nature 358, 220.

    Google Scholar 

  • Ebbesen T.W., H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi &; T. Thio, 1996. Nature 382, 54.

    Google Scholar 

  • Frank S., P. Poncharal, Z.L.Wang &; W.A. de Heer, 1998. Science 280, 1744.

    Google Scholar 

  • Gao M., S. Huang, L. Dai, G.Wallace &; Z.L.Wang, 2000. Angew. Chem. Int. Ed. 39, 3664.

    Google Scholar 

  • Govindaraj A., B.C. Satishkumar, M. Nath &; C.N.R. Rao, 2000. Chem. Mater. 12, 202.

    Google Scholar 

  • Guo G., P.J. Sadler &; S.C. Tsang, 1998. Adv. Mater. 10, 701.

    Google Scholar 

  • Harris P.J.F. 1999. Carbon Nanotubes and Related Structures: NewMaterials for Twenty-first Century, Cambridge University Press, Cambridge.

    Google Scholar 

  • Hafner J., C. Cheung &; C. Lieber, 1999. Nature 398, 761.

    Google Scholar 

  • Huang S., L. Dai &; A.W.H. Mau, 1999. J. Mater. Chem. 9, 1221.

    Google Scholar 

  • Huang S., L. Dai &; A.W.H. Mau, 1999. J. Phys. Chem. B 103, 4223.

    Google Scholar 

  • Huang S., T.W. Turney, P.A. White, A.W.H. Mau &; L. Dai, 2000. J. Phys. Chem. B 104, 2193.

    Google Scholar 

  • Ihara S. &; S. Itoh, 1995. Carbon 33, 931.

    Google Scholar 

  • Iijima S., 1980. J. Cryst. Growth 5, 675.

    Google Scholar 

  • Iijima S., 1991. Nature 354, 56.

    Google Scholar 

  • Iijima S., I. Toshinary &; Y. Ando, 1992. Nature 356, 776.

    Google Scholar 

  • Iijima S. &; T. Ichihashi, 1993. Nature 363, 603. 155

    Google Scholar 

  • Itoh S., S. Ihara &; J. Kitakami, 1993. Phys. Rev. B 47, 1703.

    Google Scholar 

  • Jacoben R.L. &; M. Monthioux, 1997. Nature 385, 211.

    Google Scholar 

  • Jirage K.B., J.C. Hulteen &; C.R. Martin, 1997. Science 278, 655.

    Google Scholar 

  • Kong J., N.R. Franklin, C. Zhou, M.G. Chapline, A. Peng, K. Cho &; H. Dai, 2000. Science 287, 622.

    Google Scholar 

  • Kouwenhoven L., 1997. Science 275, 1896.

    Google Scholar 

  • Li D.C., L. Dai, S. Huang, A.W.H. Mau &; Z.L. Wang, 2000. Chem. Phys. Lett. 316, 349.

    Google Scholar 

  • LiW.Z., S.S. Xie, L.X. Qian, B.H. Chang, B.H. Zhous, W.Y. Zhou, R.A. Zhao &; G. Wang, 1996. Science 274, 1701.

    Google Scholar 

  • Liu J., H. Dai, J.H. Hafer, D.T. Colbert, R.E. Smalley, S.J. Tans &; C. Dekker, 1997. Nature 385, 780.

    Google Scholar 

  • Ohara P.C., J.R. Heath &; W.M. Gelbart, 1998. Angew Chem., Int. Ed. 36, 1077.

    Google Scholar 

  • Ohara P.C. &; W.M. Gelbart, 1998. Langmuir 14, 3418.

    Google Scholar 

  • Planeix J.M., N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier &; P.M.J. Ajayan, 1994. Am. Chem. Soc. 116, 7935.

    Google Scholar 

  • Poncharal P., Z.L. Wang, D. Ugarte &; W.A. de Heer, 1999. Science 283, 1513.

    Google Scholar 

  • Rinzler A.G., J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D.Tomanek, P. Nordlander, D.T. Colbert &; R.E. Smalley, 1995. Science 269, 1550.

    Google Scholar 

  • Rao C.N.R., B.C. Satishkumar, A. Govindaraj &; M. Nath, 2001. Chem. Phys. Chem. 2, 78.

    Google Scholar 

  • Ren Z.F., Z.P. Huang, J.H. Xu, P.B. Wang, M.P. Siegal &; P.N. Provencio, 1998. Science 282, 1105.

    Google Scholar 

  • Rueckes K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung &; C.M. Lieber, 2000. Science 289, 94.

    Google Scholar 

  • Saito Y., T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya &; Y. Nishima, 1993. J. Phys. Chem. Solids 54, 1849.

    Google Scholar 

  • Saito Y., 1995. Carbon 33(7), 979.

    Google Scholar 

  • Saito Y. &; T. Matsumoto, 1998. Nature 392, 237.

    Google Scholar 

  • Seraphin S., D. Wang, D. Zhou &; J. Jiao, 1994. Chem. Phys. Lett. 228, 506.

    Google Scholar 

  • Terrones M.,W.K. Hsu, J.P. Hare, D.R.M.Walton, H.W. Kroto &; H. Terrones, 1996. Phil. Trans. R. Soc. Lond. A 354, 2025.

    Google Scholar 

  • Terrones M., W.K. Hsu, D.R.M. Walton &; H.W. Kroto, 1999. Topics in Current Chemistry Vol. 199, 189.

    Google Scholar 

  • Thess A. et al., 1996. Science 273, 483.

    Google Scholar 

  • Ugarte D., 1992. Nature 359, 707.

    Google Scholar 

  • Ugarte D., A. Chatelain &; W.A. de Heer, 1996. Science 274, 1897.

    Google Scholar 

  • Wang Z.L. &; Z.C. Kang, 1996. J. Phys. Chem. 100, 17725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Dai, L. Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine. Journal of Nanoparticle Research 4, 145–155 (2002). https://doi.org/10.1023/A:1020141801107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020141801107

Navigation