Skip to main content
Log in

Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The cDNAs CnHAK1 and CnHAK2, encoding K+ transporters, were amplified from the leaves of the seagrass Cymodocea nodosa. None of these transporters suppressed the K+ deficiency of a Saccharomyces cerevisiae mutant, but both suppressed the equivalent defect of an Escherichia coli mutant. Overexpression of the transporter CnHAK1, but not CnHAK2, mediated very rapid K+ or Rb+ influxes in the E. coli mutant. The concentration dependence of these influxes demonstrated that CnHAK1 is a low-affinity K+ transporter, which does not discriminate between K+ and Rb+. CnHAK1 expressed in E. coli worked in reverse when the external K+ concentrations were low, and we established the condition of a simple functional test of K+ loss for transporters of the Kup-HAK family. In comparison with its homologue barley transporter HvHAK2, CnHAK1 was insensitive to Na+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ache, P., Becker, D., Ivashikina, N., Dietrich, P., Roelfsema, M.R. and Hedrich, R. 2000. GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is aK+-selective, K+-sensing ion channel. FEBS Lett. 486: 93–98.

    Google Scholar 

  • Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J. and Gaber, R.F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736–3740.

    Google Scholar 

  • Booth, I.R., Douglas, R.M., Ferguson, G.P., Lamb, A.J., Munro, A.W. and Ritchie, G.Y. 1993. K+ efflux systems. In: Bakker, E.P. (Ed.) Alkali cation transport systems in prokaryotes. CRC Press, Boca Raton, Florida. pp. 291–308.

    Google Scholar 

  • Brunelli, J.P. and Pall, M.L. 1993. A series of yeast / Escherichia coli ? expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast 9: 1309–1318.

    Google Scholar 

  • Dennison, K.L., Robertson, W.R., Lewis, B.D., Hirsch, R.E., Sussman, M.R. and Spalding, E.P. 2001. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol. 127: 1012–1019.

    Google Scholar 

  • Epstein, E., Rains, D.W. and Elzam, O.E. 1963. Resolution of dual mechanisms of potassium absorption by barley roots. Proc. Natl. Acad. Sci. USA 49: 684–692.

    Google Scholar 

  • Fairbairn, D.J., Liu, W., Schachtman, D.P., Gomez-Gallego, S., Day, S.R. and Teasdale, R.D. 2000. Characterisation of two distinct HKT1-like potassium transporters from Eucalyptus camaldulensis. Plant Mol. Biol. 43: 515–525.

    Google Scholar 

  • Fu, H.-H. and Luan, S. 1998. AtKUP1: a dual affinity K+ transporter from Arabidopsis. Plant Cell 10: 63–73.

    Google Scholar 

  • Fukuhara, T., Pak, J.-Y., Ohwaki, Y., Tsujimura, H. and Nita, T. 1996. Tissue-specific expression of the gene for a putative plasma membrane H+-ATPase in a seagrass. Plant Physiol. 110: 35–42.

    Google Scholar 

  • Gu, L., Liu, W. and Martinac, B. 1998. Electromechanical coupling model of gating the large mechanosensitive ion channel (MscL) of Escherichia coli by mechanical force. Biophys. J. 74: 2889–2902.

    Google Scholar 

  • Guzman, L.-M., Belin, D., Carson, M.J. and Beckwith, J. 1995. Tight regulation, modulation and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121–4130.

    Google Scholar 

  • Haro, R., Sainz, L., Rubio, F. and Rodríguez-Navarro, A. 1999. Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31: 511–520.

    Google Scholar 

  • Hirsch, R.E., Lewis, B.D., Spalding, E.P. and Sussman, M.R. 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280: 918–921.

    Google Scholar 

  • Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S. and Shinmyo, A. 2001. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27: 115–128.

    Google Scholar 

  • Kim, E.J., Kwak, J.M., Uozumi, N. and Schroeder, J.I. 1998. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10: 51–62.

    Google Scholar 

  • Mäser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N. Amtmann, A., Maathuis, F.J.M., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A.and Guerinot, M.L. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126: 1646–1667.

    Google Scholar 

  • Ohyama, T., Igarasi, K. and Kobayashi, H. 1994. Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J. Bacteriol. 176: 4311–4315.

    Google Scholar 

  • Padan, E., Venturi, M., Gerchman, Y. and Dover, N. 2001. Na+/H+ antiporters. Biochim. Biophys. Acta 1505: 144–157.

    Google Scholar 

  • Quintero, J. and Blatt, M.R. 1997. A new family of K+ transporters from Arabidopsis that are conserved across phyla. FEBS Lett. 415: 206–211.

    Google Scholar 

  • Rentsch, D., Laloi, M., Rouhara, I., Schmelzer, E., Delrot, S. and Frommer, W.B. 1995. NTr1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 370: 264–268.

    Google Scholar 

  • Rhoads, D.B., Waters, F.B. and Epstein, W. 1976. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J. Gen. Physiol. 67: 325–341.

    Google Scholar 

  • Rodríguez-Navarro, A. 2000. Potassium transport in fungi and plants. Biochim. Biophys. Acta 1469: 1–30.

    Google Scholar 

  • Rodríguez-Navarro, A. and Ramos, J. 1984. Dual system for potassium transport in Saccharomyces cerevisiae. J. Bacteriol. 159: 940–945.

    Google Scholar 

  • Rubio, F., Santa-María, G.E. and Rodríguez-Navarro, A. 2000. Cloning of Arabidopsis and barley cDNAs encoding HAK potasium transporters in root and shoot cells. Physiol. Plant. 109: 34–43.

    Google Scholar 

  • Santa-María, G.E., Rubio, F., Dubcovsky, J. and Rodríguez-Navarro, A. 1997. The HAK1 gene of barley is a member of a large gene family and encodes a highaffinity potassium transporter. Plant Cell 9: 2281–2289.

    Google Scholar 

  • Schachtman, D.P. and Schroeder, J.I. 1994. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370: 655–658.

    Google Scholar 

  • Senn, M.E., Rubio, F., Bañuelos, M.A. and Rodríguez-Navarro, A. 2001. Comparative functional features of plant potassium HvHAK1 and HvHAK2 transporters. J. Biol. Chem. 276: 44563–44569

    Google Scholar 

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.-M., Gaymard, F. and Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663–665.

    Google Scholar 

  • Spalding, E.P., Hirsch, R.E., Lewis, D.R., Qi, Z., Sussman, M.R. and Lewis, B.D. 1999. Potassium uptake supporting plant growth in the absence of AKT1 channel activity. Inhibition by ammonium and stimulation by sodium. J. Gen. Physiol. 113: 909–918.

    Google Scholar 

  • Touchette, B.W. and Burkholder, J.M. 2000. Overview of the physiological ecology of carbon metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 250: 169–205.

    Google Scholar 

  • Uozumi, N. 2001. Escherichia coli as an expression system for K+ transport systems from plants. Am. J. Physiol. Cell Physiol. 281: C733–C739.

    Google Scholar 

  • Uozumi, N., Nakamura, T., Schroeder, J.I. and Muto, S. 1998. Determination of transmembrane topology of an inward rectifying K+ channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 9773–9778.

    Google Scholar 

  • Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T. and Schroeder, J.L. 2000. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. 122: 1249–1259.

    Google Scholar 

  • van der Walt, J.P. 1970. Chapter II, criteria and methods used in classification. In: Lodder, J. (Ed.) The Yeast, a Taxonomic Study. 2nd ed. North-Holland Publishing Co., Amsterdam. pp.: 34–113.

    Google Scholar 

  • Zimmermann, S. and Sentenac, H. 1999. Plant ion channels: from molecular structures to physiological functions. Curr. Opin. Plant Biol. 2: 477–482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garciadeblas, B., Benito, B. & Rodríguez-Navarro, A. Molecular cloning and functional expression in bacteria of the potassium transporters CnHAK1 and CnHAK2 of the seagrass Cymodocea nodosa . Plant Mol Biol 50, 623–633 (2002). https://doi.org/10.1023/A:1019951023362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019951023362

Navigation