Skip to main content
Log in

The expression in tobacco plants of Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF) alters growth and development of the tobacco budworm, Heliothis virescens

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The production and characterisation of transgenic tobacco plantsexpressing a precursor of a regulatory peptide from Aedesaegypti (Trypsin Modulating and Oostatic Factor, Aea-TMOF) whichinterferes with the development of tobacco budworm larvae is described. Tobaccoplants were transformed with a synthetic gene containing 6 TMOF units spaced bydibasic residues, Arg-Arg, as potential post-translational cleavage sites.Peptide extracts from transgenic plants had TMOF activity and inhibitedin vitro the biosynthesis of serine proteases. Thisactivity was consistently present in T1 plants and absent in control plants.Tobacco budworm larvae, fed with transgenic leaves showed a reduced growth ratecompared to those fed with control plants. The low rather than acute toxicityofthis low impact gene is discussed in the context of alternative integrated pestmanagement strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An G., Ebert P.R., Mitra A. and Ha S.B. 1988. Binary vectors. In: Gelvin S.B., Schilperoort R.A. and Verma D.P.S. (eds), Plant Molecular Biology Manual. Kluwer Academic Publishers, Dordrecht, pp. 1-19.

    Google Scholar 

  • Bavoso A., Falabella P., Giacometti R., Halane A.J., Ostuni A., Pennacchio F. et al. 1995. Instestinal absorption of proctolin in Helicoverpa armigera (Lepidoptera, Noctuidae) larvae. REDIA 78: 173-185.

    Google Scholar 

  • Boethel D.J. and Eikenbary R.D. 1986. Interactions of plant resistance and parasitoid and predators of insects. Ellis Horwood Ltd, Chichester, England.

    Google Scholar 

  • Borovsky D. and Schlein Y. 1988. Quantitative determinations of trypsin like and chymotrypsin like enzymes in insects. Arch Insect Biochem Physiol 8: 249-260.

    Google Scholar 

  • Borovsky D., Mahmood F. and Carlson D.A. 1989. Mosquito oostatic hormone, and its potential as unique adulticide and larvicide. Journal of the American Mosquito Control Association 60: 66-70.

    Google Scholar 

  • Borovsky D., Carlson D.A., Griffin P.R., Shabanowitz J. and Hunt D.F. 1990. Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzymes biosynthesis in the midgut. Federation of American Society of Experimental Biologists Journal 4: 3015-3020.

    Google Scholar 

  • Borovsky D., Carlson D.A., Griffin P.R., Shabanowitz J. and Hunt D.F. 1993. Mass spectrometry and characterization of Aedes aegypti trypsin modulating oostatic factor (TMOF) and its analogs. Insect Biochemistry and Molecular Biology 23: 703-712.

    PubMed  Google Scholar 

  • Borovsky D., Powell C.A., Nayar J.K., Blalock J.E. and Hayes T.K. 1994. Characterization and localization of mosquito-gut receptors for trypsin modulating oostatic factor using a complementary peptide and immunocytochemistry. Federation of American Experimental Biologists Journal 8: 350-355.

    Google Scholar 

  • Bottrell D.G., Barbosa P. and Gould F. 1997. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annual Review of Entomology 43: 347-367.

    Google Scholar 

  • Croy E.J., Ikemura T., Shirsat A. and Croy R.R.D. 1993. Plant nucleic acids. Plant molecular biology, LabFax 2: 37-42.

    Google Scholar 

  • De Loof A., Bylemans D., Schoofs L., Janssen I. and Huybrechts R. 1995. The folliculostatins of two dipteran insect species, their relation to matrix proteins and prospects for practical applications. Entomologia Experimentalis et Applicata 77: 1-9.

    Google Scholar 

  • De Loof A., Bylemans D., Schoofs L., Janssen I., Spittaels K., Vanden Broeck J. et al. 1995. Folliculostatin, gonadotropins and a model for control of growth in the grey fleshfly, Neobelleria (Sarcophaga) bullata. Insect Biochemistry and Molecular Biology 25: 661-667.

    Google Scholar 

  • De Loof A. 1996. Endogenous insect regulatory peptides: a novel lead towards insect control. Agro-Food-Industry, High Tech: Nov-Dec pp 23-25.

  • Devine G.J., Wright D.J. and Denholm I. 2000. A parasitic wasp (Eretmocerus mundus Mercet) can exploit chemically induced delays in the development rates of its whitefly host (Bemisia tabaci Genn.). Biological Control 19: 64-75.

    Google Scholar 

  • Dowson Day M.J., Ashurst J.L. and Dixon R.A. 1994. Plant expression cassette for enhanced translational efficiency. Plant Mol Biol Reporter 12: 347-357.

    Google Scholar 

  • Dowson Day M.J., Ashurst J.L., Mathias S.F., Watts J.W., Wilson T.M.A. and Dixon R.A. 1993. Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol 23: 97-109.

    PubMed  Google Scholar 

  • Doyle J.J. and Doyle J.L. 1987. Genomic Plant DNA preparation from fresh tissue. Phytochem Bull 19: 11-14.

    Google Scholar 

  • Fishman L.L., Primor N. and Zlotkin E. 1984. The selective permeability of fleshfly midgut to an orally cobra cardiotoxin. J Exp Biol 108: 441-451.

    Google Scholar 

  • Franssen H.J. 1998. Plants embrace a stepchild: the discovery of peptide growth regulators. Curr Opin Plant Biol 1: 384-387.

    PubMed  Google Scholar 

  • Gould F. 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annual Review of Entomology 43: 701-726.

    PubMed  Google Scholar 

  • Hare J.D. 1992. Effects of plant variation on herbivore-natural enemy interactions. In: Fritz R.S. and Simms E.L. (eds), Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. Univ. Chicago Press, Chicago, pp. 278-298.

    Google Scholar 

  • Horsh R.B., Fry J.E., Hoffmann N.L., Eocholtz D., Rogers S.H. and Fraley R.T. 1987. A simple and general method for transferring genes in plants. Science, 227: 1229-1231.

    Google Scholar 

  • Johnson M.T. and Gould F. 1992. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environmental Entomology 21: 586-597.

    Google Scholar 

  • Keeley L.L. and Hayes 1987. Speculation on Biotechnology applications for insect neuroendocrine research. Insect Biochem 17: 639-651.

    Google Scholar 

  • Keeley L.L., Hayes T.K. and Bradfield J.Y. 1990. Insect neuroendocrinology: its past; its present; future opportunities. In: BorKovec A.B. and Masler P. (eds), Insect Neurochemistry and Neurophysiology. Humana, Clifton, NJ, USA, pp. 163-203.

    Google Scholar 

  • Loh Y.P., Brownstein M.L. and Gainer H. 1984. Proteolysis in neuropeptide processing and other neural functions. Annu Rev Neurosci 7: 189-222.

    PubMed  Google Scholar 

  • Matsubayashi Y., Morita A., Matsunaga E., Furuya A., Hanai A. and Sagagami Y. 1999. Physiological relationship between auxin cytokinin and a peptide growth factor phytosulfoksine-a in stimulation of asparagus cell proliferation. Planta 3207: 559-565.

    Google Scholar 

  • Menn J.J. and Borkovec A.B. 1989. Insect Neuropeptides: Potential new control agents. J Agr Food Chem 37: 271-278.

    Google Scholar 

  • Primor N. and Zlotkin E. 1978. Oral toxicity of venom and toxins to blowflies. In: Rosenberg P. (ed.), Toxins: Animal, Plant and Microbial. Pergamon Press, Oxford, pp. 1087-1095.

    Google Scholar 

  • Primor N. and Zlotkin E. 1980. Penetrability of proteins through the digestive system of sarcophaga falculata blowfly. Biochim Biophys Acta 627: 82-90.

    PubMed  Google Scholar 

  • Primor N., Teitelbaum Z. and Zlotkin E. 1980. Penetrability of orally toxic protein from cobra venom through the gut of a blowfly. Biochim Biophys Acta 627: 71-81.

    PubMed  Google Scholar 

  • Raina A.K., Rafaeli A. and Kingan T. 1994. Pheromonotropic activity of orally administred PBAN and its analogues in Helicoverpa zea. J Insect Physiol 40: 393-397.

    Google Scholar 

  • Rao R., Manzi A., Filippone E., Manfredi P., Spasiano A., Colucci G. et al. 1996. Synthesis and expression of genes encoding putative insect neuropeptide precursor in tobacco. Gene 175: 1-5.

    PubMed  Google Scholar 

  • Ryan C. and Pearce G. 1998. Systemin: a polypeptide signal for plant defensive genes. Ann Rev Cell Dev Biol 14: 1-17.

    Google Scholar 

  • Sambrook J., Fritsh E.F. and Maniatis T. 1989. Molecular cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  • Schneidermann H.A. 1984. What entomology has in store for biotechnology. Bull Ent Soc Am 30: 55-61.

    Google Scholar 

  • Sokal R.R., Rohlf F. and James 1995. Biometry. 3rd edn. Freeman, NY.

    Google Scholar 

  • SPSS Inc. 1999. Systat for Windows Statistics I., pp. 660.

  • Van Emden H.F. 1966. Plant insect relationships and pest control. World Rev Pest Control 5: 115-123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortiglione, C., Fanti, P., Pennacchio, F. et al. The expression in tobacco plants of Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF) alters growth and development of the tobacco budworm, Heliothis virescens . Molecular Breeding 9, 159–169 (2002). https://doi.org/10.1023/A:1019785914424

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019785914424

Navigation