Skip to main content
Log in

Polynomial interpolation in several variables

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This is a survey of the main results on multivariate polynomial interpolation in the last twenty-five years, a period of time when the subject experienced its most rapid development. The problem is considered from two different points of view: the construction of data points which allow unique interpolation for given interpolation spaces as well as the converse. In addition, one section is devoted to error formulas and another to connections with computer algebra. An extensive list of references is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Aitken, On interpolation by iteration of proportional parts without the use of differences, Proc. Edinburgh Math. Soc. 3 (1932) 56–76.

    Article  MATH  Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK Users' Guide, 2nd ed. (SIAM, Philadelphia, PA, 1995).

    MATH  Google Scholar 

  3. I.S. Berezin and N.P. Zhidkov, Computing Methods (Addison-Wesley, Reading, MA, 1965). (Russian version in 1959).

  4. O. Biermann, Ñber näherungsweise Kubaturen, Monatsh. Math. Phys. 14 (1903) 211–225.

    MATH  MathSciNet  Google Scholar 

  5. G. Birkhoff, The algebra of multivariate interpolation, in: Constructive Approaches to Mathematical Models, eds. C.V. Coffman and G.J. Fix (Academic Press, New York, 1979) pp. 345–363.

    Google Scholar 

  6. B. Bojanov, H.A. Hakopian and A. Sahakian, Spline Functions and Multivariate Interpolation (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  7. L. Bos, On certain configurations of points in Rn which are unisolvent for polynomial interpolation, SIAM J. Approx. Theory 64 (1991) 271–280.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Brezinski, The Mühlbach–Neville–Aitken algorithm and some extensions, BIT 80 (1980) 444–451.

    MathSciNet  Google Scholar 

  9. B. Buchberger, Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math. 4 (1970) 374–383.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: Multidimensional System Theory, ed. N.K. Bose (Reidel, 1985) pp. 184–232.

  11. B. Buchberger, An algorithmic criterion for the solvability of a system of algebraic equations, in: Groebner Bases and Applications (Proc. of the Conf. 33 Years of Groebner Bases), eds. B. Buchberger and F. Winkler, London Mathematical Society Lecture Notes Series, Vol. 251 (Cambridge University Press, 1998) pp. 535–545. Translation of [9]by M. Abramson and R. Lumbert.

  12. B. Buchberger and H.M. Möller, The construction of multivariate polynomials with preassigned zeros, in: Computer Algebra, EUROCAM' 82, European Computer Algebra Conference, eds. G. Goos and J. Hartmanis, Lecture Notes in Computer Science, Vol. 144 (Springer, 1982) pp. 24–31.

  13. J.R. Busch, Osculatory interpolation in Rn, SIAM J. Numer Anal. 22 (1985) 107–113.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.R. Busch, A note on Lagrange interpolation in R2, Rev. Un. Mat. Argentina 36 (1990) 33–38.

    MATH  MathSciNet  Google Scholar 

  15. J.M. Carnicer and M. Gasca, On finite element interpolation problems, in: Mathematical Methods in Computer Aided Geometric Design, eds. T. Lyche and L.L. Schumaker (Academic Press, 1989) pp. 105–113.

  16. J.M. Carnicer and M. Gasca, On the evaluation of multivariate Lagrange formulae, in: Multivariate Approximation Theory IV, ed. W. Schempp (Birkhäuser, Basel, 1989) pp. 65–72.

    Google Scholar 

  17. J.M. Carnicer and M. Gasca, Evaluation of multivariate polynomials and their derivatives, Math. Comp. 54 (1990) 231–244.

    Article  MATH  MathSciNet  Google Scholar 

  18. A.L. Cavaretta, T. Goodman, C.A. Micchelli and A. Sharma, Multivariate interpolation and the Radon transform, part III: Lagrange representation, in: CMS Conference Proceedings, Vol. 3, eds. Z. Ditzian, A. Meir, S.D. Riemenschneider and A. Sharma (Canadian Math. Soc., 1983) pp. 37–50.

  19. A.L. Cavaretta, C.A. Micchelli and A. Sharma, Multivariate interpolation and the Radon transform, Math. Z. 174 (1980) 263–279.

    Article  MATH  MathSciNet  Google Scholar 

  20. A.L. Cavaretta, C.A. Micchelli and A. Sharma, Multivariate interpolation and the Radon transform, part II: Some further examples, in: Quantitative Approximation, eds. R.A. DeVore and K. Scherer (Academic Press, 1980) pp. 49–62.

  21. C.K. Chui, Multivariate Splines, CBMS–NSF Regional Conference Series in Applied Mathematics, Vol. 54 (SIAM, 1988).

  22. C.K. Chui and M.J. Lai, Vandermonde determinants and Lagrange interpolation in Rs, in: Nonlinear and Convex Analysis, ed. B.L. Lin (Marcel Dekker, 1988).

  23. K.C. Chung and T.H. Yao, On lattices admitting unique Lagrange interpolation, SIAM J. Numer. Anal. 14 (1977) 735–743.

    Article  MATH  MathSciNet  Google Scholar 

  24. P.G. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

    MATH  Google Scholar 

  25. P.G. Ciarlet and P.A. Raviart, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972) 178–199.

    Article  MathSciNet  Google Scholar 

  26. P.G. Ciarlet and C. Wagschal, Multipoint Taylor formulas and applications to the finite element method, Numer. Math. 17 (1971) 84–100.

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Coatmelec, Approximation et interpolation des fonctions differentiables de plusieurs variables, Ann. Sci. Ecole Norm. Sup. 83 (1966) 271–341.

    MATH  MathSciNet  Google Scholar 

  28. A.R. Conn, K. Scheinberg and Ph.L. Toint, On the convergence of derivative-free methods for unconstrained optimization, in: Approximation and Optimization. Tributes to M.J.D. Powell, eds. M.D. Buhmann and A. Iserles (Cambridge University Press, 1997) pp. 83–109.

  29. D. Cox, J. Little and D. O'shea, Ideals, Varieties and Algorithms, Undergraduate Texts in Mathematics (Springer, Berlin, 1992).

    Google Scholar 

  30. D. Cox, J. Little and D. O'shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Vol. 185 (Springer, Berlin, 1998).

    Google Scholar 

  31. P.J. Davis, Interpolation and Approximation (Dover, 1975).

  32. C. de Boor, Topics in multivariate approximation theory, in: Topics in Numerical Analysis, Lecture Notes in Mathematics, Vol. 965 (Birkhäuser, Basel, 1982) pp. 39–78.

    Google Scholar 

  33. C. de Boor, Gauss elimination by segments and multivariate polynomial interpolation, in: Approximation and Computation: A Festschrift in Honor of Walter Gautschi, ed. R.V.M. Zahar (Birkhäuser, Basel, 1994) pp. 87–96.

    Google Scholar 

  34. C. de Boor, Polynomial interpolation in several variables, in: Studies in Computer Science, eds. R. de Millo and J.R. Rice (Plenum, 1994) pp. 87–119.

  35. C. de Boor, A multivariate divided difference, in: Approximation Theory VIII, Vol. 1: Approximation and Interpolation, eds. C.K. Chui and L.L. Schumaker (World Scientific, 1995) pp. 87–96.

  36. C. de Boor, On the Sauer–Xu formula in multivariate polynomial interpolation, Math. Comp. 65 (1996) 1231–1234.

    Article  MATH  MathSciNet  Google Scholar 

  37. C. de Boor, The error in polynomial tensor-product, and in Chung–Yao interpolation, in: Surface Fitting and Multiresolution Methods, eds.A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt University Press, 1997) pp. 35–50.

  38. C. de Boor, Computational aspects of multivariate polynomial interpolation: Indexing the coeffi-cients, this issue.

  39. C. de Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx. 6 (1990) 287–302.

    Article  MATH  MathSciNet  Google Scholar 

  40. C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several variables, Math. Comp. 58 (1992) 705–727.

    Article  MATH  MathSciNet  Google Scholar 

  41. C. de Boor and A. Ron, The least solution for the polynomial interpolation problem, Math. Z. 210 (1992) 347–378.

    MATH  MathSciNet  Google Scholar 

  42. N. Dyn and A. Ron, On multivariate polynomial interpolation, in: Algorithms for Approximation II, eds. J.C. Mason and M.E. Cox (Chapman and Hall, 1990) pp. 177–184.

  43. D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150 (Springer, 1994).

  44. M. Gasca, Multivariate polynomial interpolation, in: Computation of Curves and Surfaces, eds. W. Dahmen, M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1990) pp. 215–236.

    Google Scholar 

  45. M. Gasca and E. Lebrón, On Aitken–Neville formulae for multivariate interpolation, in: Numerical Approximation of Partial Differential Equations, ed. E.L. Ortiz (North-Holland, Amsterdam, 1987) pp. 133–140.

    Google Scholar 

  46. M. Gasca and A. López-Carmona, A general recurrence interpolation formula and its applications to multivariate interpolation, J. Approx. Theory 34 (1982) 361–374.

    Article  MATH  MathSciNet  Google Scholar 

  47. M. Gasca and J.I. Maeztu, On Lagrange and Hermite interpolation in Rk, Numer. Math. 39 (1982) 1–14.

    MATH  MathSciNet  Google Scholar 

  48. M. Gasca and J.J. Martínez, On the computation of multivariate confluent Vandermonde determinants and its applications, in: The Mathematics of Surfaces II, ed. R. Martin (Oxford University Press, 1987) pp. 101–114.

  49. M. Gasca and J.J. Martínez, On the solvability of bivariate Hermite–Birkhoff interpolation problems, J. Comput. Appl. Math. 32 (1990) 77–82.

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Gasca and G. Mühlbach, Multivariate interpolation: a survey with regard to extrapolation, in: Proceedings IMACS Transactions on Scientific Computing, Vol. 1 (Paris, 1988) pp. 255–278.

    Google Scholar 

  51. M. Gasca and G. Mühlbach, Multivariate polynomial interpolation under projectivities II: Aitken– Neville formulas, Numer. Algorithms 2 (1992) 255–278.

    Article  MATH  MathSciNet  Google Scholar 

  52. M. Gasca and V. Ramirez, Interpolation systems in Rk, J. Approx. Theory 42 (1984) 36–51.

    Article  MATH  MathSciNet  Google Scholar 

  53. M. Gasca and T. Sauer, On bivariate Hermite interpolation with minimal degree polynomials, SIAM J. Numer. Anal. (1998, to appear).

  54. H.V. Gevorgian, H.A. Hakopian and A.A. Sahakian, On the bivariate Hermite interpolation problem, Constr. Approx. 11 (1995) 23–35.

    Article  MATH  MathSciNet  Google Scholar 

  55. G. Glaeser, L'interpolation des fonctions differentiables de plusieurs variables, in: Proc. Liverpool Singularities Symposium II, Lecture Notes in Mathematics, Vol. 209 (Springer, Berlin, 1971) pp. 1–29.

    MathSciNet  Google Scholar 

  56. J.L. Gout, Estimation de l'erreur d'interpolation d'Hermite dans Rn, Numer. Math. 28 (1977) 407–429.

    MATH  MathSciNet  Google Scholar 

  57. W. Gröbner, Algebraische Geometrie I, II (Bibliographisches Institut Mannheim, B.I– Hochschultaschenbücher, 1968 and 1970).

  58. P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978).

    MATH  Google Scholar 

  59. R.B. Guenter and E.L. Roetman, Some observations on interpolation in higher dimensions, Math. Comp. 24 (1970) 517–521.

    Article  MathSciNet  Google Scholar 

  60. A.W. Habib, R.N. Goldman and T. Lyche, A recursive algorithm for Hermite interpolation over a triangular grid, J. Comput. Appl. Math. 73 (1996) 95–118.

    Article  MATH  MathSciNet  Google Scholar 

  61. F. Hack, On bivariate Birkhoff interpolation, J. Approx. Theory 49 (1987) 18–30.

    Article  MATH  MathSciNet  Google Scholar 

  62. H.A. Hakopian, Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type, J. Approx. Theory 34 (1982) 286–305.

    Article  MATH  MathSciNet  Google Scholar 

  63. K. Höllig and C.A. Micchelli, Divided differences, hyperbolic equations and lifting distributions, Constr. Approx. 3 (1987) 143–156.

    Article  MATH  MathSciNet  Google Scholar 

  64. E. Isaacson and H.B. Keller, Analysis of Numerical Methods (Wiley, New York, 1966).

    MATH  Google Scholar 

  65. K. Jetter, Some contributions to bivariate interpolation and cubature, in: Approximation Theory IV, eds. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1983) pp. 533–538.

    Google Scholar 

  66. P. Kergin, A natural interpolation of Ck functions, J. Approx. Theory 29 (1980) 278–293.

    Article  MATH  MathSciNet  Google Scholar 

  67. D. Kincaid and W. Cheney, Numerical Analysis (Brooks/Cole, 1991).

  68. L. Kronecker, Ñber einige Interpolationsformeln für ganze Funktionen mehrerer Variabeln, in: L. Kroneckers Werke, Vol. I, ed. H. Hensel (Chelsea, 1865) pp. 133–141. Lecture at the Academy of Sciences, December 21, 1865.

  69. K.S. Kunz, Numerical Analysis (McGraw-Hill, 1957).

  70. S.L. Lee and G.M. Phillips, Polynomial interpolation at points of a geometric mesh on a triangle, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988) 75–87.

    MATH  MathSciNet  Google Scholar 

  71. S.L. Lee and G.M. Phillips, Construction of lattices for Lagrange interpolation in projective space, Constr. Approx. 7 (1991) 283–297.

    Article  MATH  MathSciNet  Google Scholar 

  72. A. Le Méhauté, A finite element approach to surface reconstruction, in: Computation of Curves and Surfaces, eds. W. Dahmen, M. Gasca and C.A. Micchelli (Kluwer Academic, 1990) pp. 237–274.

  73. A. Le Méhauté, On some aspects of multivariate polynomial interpolation, this issue.

  74. S.K. Lodha and R.N. Goldman, A unified approach to evaluation algorithms for multivariate polynomials, Math. Comp. 66 (1997) 1521–1553.

    Article  MATH  MathSciNet  Google Scholar 

  75. J. Lorente and V. Ramírez, On interpolation systems and H-reducible interpolation problems, in: Topics in Multivariate Approximation, eds. C.K. Chui, L.L. Schumaker and F. Utreras (Academic Press, 1987) pp. 153–163.

  76. G.G. Lorentz, Approximation of Functions (Chelsea, 1966).

  77. G.G. Lorentz, K. Jetter and S.D. Riemenschneider, Birkhoff Interpolation (Addison-Wesley, Reading, MA, 1983).

  78. R.A. Lorentz, Multivariate Birkhoff Interpolation, Lecture Notes in Mathematics, Vol. 1516 (Springer, Berlin, 1992).

    MATH  Google Scholar 

  79. F.S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 19 (Cambridge University Press, 1916).

  80. J.I. Maeztu, Divided differences associated with reversible systems in R2, SIAM J. Numer. Anal. 19 (1982) 1032–1040.

    Article  MATH  MathSciNet  Google Scholar 

  81. J.C. Mairhuber, On Haar's Theorem concerning Chebychev approximation problems having unique solutions. Proc. Amer. Math. Soc. 7 (1956) 609–615.

    Article  MATH  MathSciNet  Google Scholar 

  82. M.G. Marinari, H.M. Möller and T. Mora, Gröbner bases of ideals given by dual bases, in: Proceedings of ISAAC (1991).

  83. M.G. Marinari, H.M. Möller and T. Mora, Gröbner bases of ideals defined by functionals with an application to ideals of projective points, J. AAECC 4 (1993) 103–145.

    Article  MATH  Google Scholar 

  84. M.G. Marinari, H.M. Möller and T. Mora, On multiplicities in polynomial system solving, Trans. Amer. Math. Soc. 348 (1996) 3283–3321.

    Article  MATH  MathSciNet  Google Scholar 

  85. C.A. Micchelli, On a numerically efficient method of computing multivariate B-splines, in: Multivariate Approximation Theory, eds. W. Schempp and K. Zeller (Birkhäuser, Basel, 1979) pp. 211–248.

    Google Scholar 

  86. C.A. Micchelli, A constructive approach to Kergin interpolation in Rk: multivariate B-splines and Lagrange interpolation, Rocky Mountain J. Math. 10 (1979) 485–497.

    Article  MathSciNet  Google Scholar 

  87. C.A. Micchelli and P. Milman, A formula for Kergin interpolation in Rk, J. Approx. Theory 29 (1980) 294–296.

    Article  MATH  MathSciNet  Google Scholar 

  88. C.A. Micchelli, Algebraic aspects of interpolation, in: Approximation Theory, ed. C. de Boor, Proceedings of Symposia in Applied Mathematics, Vol. 36, (Amer. Math. Soc., Providence, RI, 1986) pp. 81–102.

  89. C.A. Micchelli, Mathematical Aspects of Geometric Modeling, CBMS–NSF Regional Conference Series in Applied Mathematics, Vol. 65 (SIAM, Philadelphia, PA, 1995).

  90. C.A. Micchelli, T. Sauer and Yuesheng Xu, A construction of refinable sets for interpolating wavelets, Res. Math. 34 (1998) 359–372.

    MATH  MathSciNet  Google Scholar 

  91. H.M. Möller, Hermite interpolation in several variables using ideal-theoretic methods, in: Constructive Theory of Functions of Several Variables, eds. W. Schempp and K. Zeller, Lecture Notes in Mathematics, Vol. 571 (1977) pp. 155–163.

  92. H.M. Möller, Gröbner bases and numerical analysis, in: Groebner Bases and Applications (Proc. of the Conf. 33 Years of Groebner Bases), eds. B. Buchberger and F. Winkler, London Math. Soc. Lecture Notes, Vol. 251 (Cambridge University Press, 1998) pp. 159–179.

  93. H.M. Möller and T. Sauer, H-bases for polynomial interpolation and system solving, this issue.

  94. G. Mühlbach, On multivariate interpolation by generalized polynomials on subsets of grids, Comput. 40 (1988).

  95. G. Mühlbach, The general Neville–Aitken algorithm and some applications, Numer. Math. 31 (1978) 97–110.

    Article  MATH  MathSciNet  Google Scholar 

  96. G. Mühlbach and M. Gasca, Multivariate interpolation under projectivities I. Lagrange and Newton interpolation formulas, Numer. Algorithms 1 (1991) 375–400.

    Article  MATH  MathSciNet  Google Scholar 

  97. E.H. Neville, Iterative interpolation, J. Indian Math. Soc. 20 (1934) 87–120.

    MATH  Google Scholar 

  98. R.A. Nicolaides, On a class of finite elements generated by Lagrange interpolation, SIAM J. Numer. Anal. 9 (1972) 435–445.

    Article  MATH  MathSciNet  Google Scholar 

  99. R.A. Nicolaides, On a class of finite elements generated by Lagrange interpolation. II, SIAM J. Numer. Anal. 10 (1973) 182–189.

    Article  MATH  MathSciNet  Google Scholar 

  100. J.M. Peña and T. Sauer, On the multivariate Horner scheme, SIAM J. Numer. Anal. (1999, to appear).

  101. L. Robbiano, On the theory of graded structures, J. Symbolic Comput. 2 (1986) 139–170.

    Article  MATH  MathSciNet  Google Scholar 

  102. H.E. Salzer, Divided differences for functions of two variables for irregularly spaced arguments, Numer. Math. 6 (1964) 68–77.

    Article  MATH  MathSciNet  Google Scholar 

  103. T. Sauer, Computational aspects of multivariate polynomial interpolation, Adv. Comput. Math. 3 (1995) 219–238.

    Article  MATH  MathSciNet  Google Scholar 

  104. T. Sauer, Polynomial interpolation of minimal degree, Numer. Math. 78 (1997) 59–85.

    Article  MATH  MathSciNet  Google Scholar 

  105. T. Sauer, Polynomial interpolation of minimal degree and Gröbner bases, in: Groebner Bases and Applications (Proc. of the Conf. 33 Years of Groebner Bases), eds. B. Buchberger and F. Winkler, London Math. Soc. Lecture Notes, Vol. 251 (Cambridge University Press, 1998) pp. 483–494.

  106. T. Sauer, Gröbner bases, H-bases and interpolation, Trans. Amer. Math. Soc., to appear.

  107. T. Sauer and Yuan Xu, On multivariate Lagrange interpolation, Math. Comp. 64 (1995) 1147–1170.

    Article  MATH  MathSciNet  Google Scholar 

  108. T. Sauer and Yuan Xu, On multivariate Hermite interpolation, Adv. Comput. Math. 4 (1995) 207–259.

    Article  MATH  MathSciNet  Google Scholar 

  109. T. Sauer and Yuan Xu, Regular points for Lagrange interpolation on the unit disk, Numer. Algorithms 12 (1996) 287–296.

    Article  MATH  MathSciNet  Google Scholar 

  110. L.L. Schumaker, Fitting surfaces to scattered data, in: Approximation Theory 2, eds. G.G. Lorentz, C.K Chui and L.L. Schumaker (Academic Press, 1976).

  111. I.F. Steffensen, Interpolation (Chelsea, New York, 1927).

    MATH  Google Scholar 

  112. H.C. Thacher Jr., Derivation of interpolation formulas in several independent variables, Ann. New York Acad. Sci. 86 (1960) 758–775.

    MATH  MathSciNet  Google Scholar 

  113. H.C. Thacher Jr. and W.E. Milne, Interpolation in several variables, J. SIAM 8 (1960) 33–42.

    MATH  MathSciNet  Google Scholar 

  114. R.S. Walker, Algebraic Curves (Springer, Berlin, 1978).

    MATH  Google Scholar 

  115. H. Werner, Remarks on Newton type multivariate interpolation for subsets of grids, Comput. 25 (1980) 181–191.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasca, M., Sauer, T. Polynomial interpolation in several variables. Advances in Computational Mathematics 12, 377–410 (2000). https://doi.org/10.1023/A:1018981505752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018981505752

Navigation