Skip to main content
Log in

Novel Bioresorbable and Bioeliminable Surfactants for Microsphere Preparation

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this work is to prepare microspheres by the emulsion-solvent evaporation process using MPOE-PLA copolymers as the matrix material and/or the surfactant. This preparation was studied in order to avoid the use of PVA as the surfactant in the process.

Methods. Two series of MPOE-PLA copolymers were synthesised. The first, with a long and constant length PLA chain (45,000 g.mol-1), was used as the matrix material, the second, with short PLA chains (≤ 2,200 g.mo1-1), and different HLB as the surfactant. Microspheres were prepared by the "simple” and "double” emulsion methods. The steric stabilization effect of the copolymers was investigated using confocal microscopy and X-ray photoelectron spectroscopy (XPS).

Results. Confocal microscopy and XPS analysis showed that the microspheres prepared using MPOE5K-PLA0.5K as the surfactant and MPOE-PLA45K copolymers as the matrix material had an MPOE coating present at the microsphere surface. This hydrophilic layer ensures steric stabilization of the particles.

Conclusions. MPOE-PLA copolymers can be used for the preparation of particles instead of PVA and their use can be extended whenever a biocompatible and bioeliminable surfactant is required for biological or medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. E. Cutright, J. D. Beasley, and B. Perez. Histologic comparison of polylactic and polyglycolic acid sutures. Oral Surg. 32:165–173 (1971).

    Google Scholar 

  2. P. H. Craig, J. A. Williams, K. W. Davis, A. D. Magoun, A. J. Levy, S. Bogdansky, and J. P. Jones Jr. A biologic comparison of polylactic 910 and polyglycolic acid synthetic absorbable sutures. Surg. Gynecol. Obstet. 141:1–10 (1975).

    Google Scholar 

  3. H. T. Wang, E. Schmitt, D. R. Flanagan, and R. J. Linhardt. Influence of formulation methods on the in vitro controlled release of proteins from poly(ester) microspheres, J. Contr. Rel. 17: 23–31 (1991)

    Google Scholar 

  4. Y. Tabata, S. Gutta, and R. Langer. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res. 10:487–496 (1993).

    Google Scholar 

  5. G. Crotts, H. Sah, and T. G. Park. Adsorption determines in vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J. Contr. Rel. 41:101–111 (1997).

    Google Scholar 

  6. E. Celikkaya, E. B. Denkbas, and E. Piskin. Rifampicin carrying poly(D,L-lactide)/poly(ethylene glycol) microspheres: loading and release. Artificial Organs. 20:743–751 (1996).

    Google Scholar 

  7. K. J. Youxin, C. Volland, and T. Kissel. In vitro degradation and bovine serum albumin release of the ABA triblock copolymers consisting of poly(L(+) lactic acid) or poly(L(+) lactic acid or glycolic acid) A-blocks attached to central polyoxyethylene B-blocks. J. Control. Rel. 32:121–128 (1994).

    Google Scholar 

  8. S. Stolnik, S. E. Dunn, M. C. Garnett, M. C. Davies, A. G. A. Coombes, D. C. Taylor, M. P. Irving, S. C. Purkiss, T. F. Tardros, S. Davis, and L. Illum. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly-(ethylene glycol) copolymers. Pharm. Res. 11:1800–1808 (1994).

    Google Scholar 

  9. X. S. G. Hu, H. J. Liu, and I. L Pan. Inhibition of bovine serum albumin adsorption by poly (ethylene glycol) soft segment in biodegradable poly(ethylene glycol)/poly(L-lactide) copolymers. J. Appl. Pol. Sci. 50:1391–1396 (1993).

    Google Scholar 

  10. S. Stolnick, L. Illum, and S. S. Davis. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 16:195–214 (1995).

    Google Scholar 

  11. D. Bazile, C. Prud'homme, M. T. Bassoulet, M. Marlard, G. Spenlehauer, and M. Veillard. Stealth MePEG-PLA nanoparticles avoid uptake by the mononuclear phagocyte system. J. Pharm. Sci. 84:493–498 (1995).

    Google Scholar 

  12. A. M. Leray, M. Vert, J. C. Gautier, and J. P. Benoit. Fate of [C-14] poly(DL-lactide-co-glycolide) nanoparticles after intravenous and oral-administration to mice. Int. J. Pharm. 106:201–211 (1994).

    Google Scholar 

  13. H. Rafati, E. C. Lavelle, A. G. A. Coombes, J. Holland, and S. S. Davis. The immune response to a model antigen associated with PLG microparticles prepared using different surfactants. Vaccine. 15:1888–1897 (1997).

    Google Scholar 

  14. T. Yamaoka, Y. Tabata, and Y. Ikada. Accumulation of poly(vinyl alcohol) at inflamatory site. ACS Symposium Series. 545:163–171 (1994).

    Google Scholar 

  15. T. Yamaoka, Y. Tabata, and Y. Ikada. Comparison of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration. J. Pharm. Pharmacol. 47:479–486 (1995).

    Google Scholar 

  16. W. C. Hueper. Carcinogenic studies of water-soluble and insoluble macromolecules. Arch. Pathol. 67:589–617 (1959).

    Google Scholar 

  17. P. Bouillot, A. Petit, and E. Dellacherie. Protein encapsulation in biodegradable amphiphilic microspheres I. Polymer synthesis and characterization, and microsphere elaboration. J. Appl. Pol. Sci. 68:1695–1702 (1998).

    Google Scholar 

  18. H. R. Kricheldorf and C. Boettcher. Polylactones 27. Anionic polymerisation of L-lactide. Variation of end groups and synthesis of block copolymers with poly(ethylene oxide). Makromol. Chem. Macromol. Symp. 73:47–64 (1993).

    Google Scholar 

  19. R. Gref, V. Babak, P. Bouillot, I. Lukina, M. Borodev, and E. Dellacherie. Interfacial and emulsion stabilising properties of amphiphilic water-soluble poly(ethylene glycol)-poly(lactic acid) copolymers for the fabrication of biocompatible nano-and microparticles. Colloids and Surfaces. A. Physico-chemical and engineering aspects. In press.

  20. M. C. Davies, R. D. Short, M. A. Kahn, J. F. Watts, A. Brown, M. J. Eccles, P. Humphrey, J. C. Vickerman, and M. Vert. An XPS and SIMS analysis of biodegradable biomedical polyesters. Surf. Interface Anal. 14:115–120 (1989).

    Google Scholar 

  21. K. M. Shakesheff, C. Evora, I. Soriano, and R. Langer. The adsorption of poly(vinyl alcohol) to biodegradable microparticles studied by X-Ray Photoelectron Spectroscopy (XPS). J. Colloid Interface Sci. 185:538–547 (1997).

    Google Scholar 

  22. M. Penco, S. Marcioni, P. Ferruti, S. D'antone, and R. Deghenghi. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials. 17:1583–1590 (1996).

    Google Scholar 

  23. A. Carrio, G. Schwach, J. Coudane, and M. Vert. Preparation and degradation of surfactant-free PLAGA microspheres. J. Control. Rel. 37:113–121 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bouillot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillot, P., Babak, V. & Dellacherie, E. Novel Bioresorbable and Bioeliminable Surfactants for Microsphere Preparation. Pharm Res 16, 148–154 (1999). https://doi.org/10.1023/A:1018895417915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018895417915

Navigation